2015-07-11 08:33:24 +08:00
![Darknet Logo ](http://pjreddie.com/media/files/darknet-black-small.png )
2016-12-02 23:00:47 +08:00
# Yolo-Windows v2
# "You Only Look Once: Unified, Real-Time Object Detection (version 2)"
A yolo windows version (for object detection)
Contributtors: https://github.com/pjreddie/darknet/graphs/contributors
This repository is forked from Linux-version: https://github.com/pjreddie/darknet
More details: http://pjreddie.com/darknet/yolo/
##### Requires:
* **MS Visual Studio 2015 (v140)**: https://www.microsoft.com/download/details.aspx?id=48146
* **CUDA 8.0 for Windows x64**: https://developer.nvidia.com/cuda-downloads
* **OpenCV 2.4.9**: https://sourceforge.net/projects/opencvlibrary/files/opencv-win/2.4.9/opencv-2.4.9.exe/download
- To compile without OpenCV - remove define OPENCV from: Visual Studio->Project->Properties->C/C++->Preprocessor
- To compile with different OpenCV version - change in file yolo.c each string look like ** #pragma comment(lib, "opencv_core249.lib")** from 249 to required version.
2016-12-08 00:39:43 +08:00
- With OpenCV will show image or video detection in window and store result to: test_dnn_out.avi
2016-12-02 23:00:47 +08:00
##### Pre-trained models for different cfg-files can be downloaded from (smaller -> faster & lower quality):
2016-12-06 20:13:42 +08:00
* `yolo.cfg` (256 MB COCO-model) - require 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo.weights
* `yolo-voc.cfg` (256 MB VOC-model) - require 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo-voc.weights
* `tiny-yolo.cfg` (60 MB COCO-model) - require 1 GB GPU-RAM: http://pjreddie.com/media/files/tiny-yolo.weights
* `tiny-yolo-voc.cfg` (60 MB VOC-model) - require 1 GB GPU-RAM: http://pjreddie.com/media/files/tiny-yolo-voc.weights
2016-12-02 23:00:47 +08:00
Put it near compiled: darknet.exe
2016-12-06 20:13:42 +08:00
You can get cfg-files by path: `darknet/cfg/`
2016-12-02 23:00:47 +08:00
##### Examples of results:
[![Everything Is AWESOME ](http://img.youtube.com/vi/VOC3huqHrss/0.jpg )](https://www.youtube.com/watch?v=VOC3huqHrss "Everything Is AWESOME")
Others: https://www.youtube.com/channel/UC7ev3hNVkx4DzZ3LO19oebg
2016-12-02 23:08:33 +08:00
### How to use:
##### Example of usage in cmd-files from `build\darknet\x64\`:
2016-12-02 23:00:47 +08:00
2016-12-06 19:58:53 +08:00
* `darknet_voc.cmd` - initialization with 256 MB VOC-model yolo-voc.weights & yolo-voc.cfg and waiting for entering the name of the image file
2016-12-08 00:39:43 +08:00
* `darknet_demo_voc.cmd` - initialization with 256 MB VOC-model yolo-voc.weights & yolo-voc.cfg and play your video file which you must rename to: test.mp4, and store result to: test_dnn_out.avi
* `darknet_net_cam_voc.cmd` - initialization with 256 MB VOC-model, play video from network video-camera mjpeg-stream (also from you phone) and store result to: test_dnn_out.avi
2016-12-10 18:15:47 +08:00
* `darknet_web_cam_voc.cmd` - initialization with 256 MB VOC-model, play video from Web-Camera number #0 and store result to: test_dnn_out.avi
2016-12-06 19:58:53 +08:00
##### How to use on the command line:
* 256 MB COCO-model - image: `darknet.exe detector test data/coco.data yolo.cfg yolo.weights -i 0 -thresh 0.2`
2016-12-06 23:22:32 +08:00
* Alternative method 256 MB COCO-model - image: `darknet.exe detect yolo.cfg yolo.weights -i 0 -thresh 0.2`
2016-12-06 19:58:53 +08:00
* 256 MB VOC-model - image: `darknet.exe detector test data/voc.data yolo-voc.cfg yolo-voc.weights -i 0`
* 256 MB COCO-model - video: `darknet.exe detector demo data/coco.data yolo.cfg yolo.weights test.mp4 -i 0`
* 256 MB VOC-model - video: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights test.mp4 -i 0`
* Alternative method 256 MB VOC-model - video: `darknet.exe yolo demo yolo-voc.cfg yolo-voc.weights test.mp4 -i 0`
* 60 MB VOC-model for video: `darknet.exe detector demo data/voc.data tiny-yolo-voc.cfg tiny-yolo-voc.weights test.mp4 -i 0`
* 256 MB COCO-model for net-videocam - Smart WebCam: `darknet.exe detector demo data/coco.data yolo.cfg yolo.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0`
* 256 MB VOC-model for net-videocam - Smart WebCam: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0`
2016-12-10 18:15:47 +08:00
* 256 MB VOC-model - WebCamera #0: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights -c 0`
2016-12-02 23:08:33 +08:00
2016-12-02 23:00:47 +08:00
##### For using network video-camera mjpeg-stream with any Android smartphone:
1. Download for Android phone mjpeg-stream soft: IP Webcam / Smart WebCam
Smart WebCam - preferably: https://play.google.com/store/apps/details?id=com.acontech.android.SmartWebCam
IP Webcam: https://play.google.com/store/apps/details?id=com.pas.webcam
2. Connect your Android phone to computer by WiFi (through a WiFi-router) or USB
3. Start Smart WebCam on your phone
4. Replace the address below, on shown in the phone application (Smart WebCam) and launch:
2016-12-06 23:22:32 +08:00
* 256 MB COCO-model: `darknet.exe detector demo data/coco.data yolo.cfg yolo.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0`
* 256 MB VOC-model: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0`
2016-12-02 23:08:33 +08:00
2016-12-02 23:00:47 +08:00
### How to compile:
2016-12-03 01:08:03 +08:00
1. If you have CUDA 8.0, OpenCV 2.4.9 (C:\opencv_2.4.9) and MSVS 2015 then start MSVS, open `build\darknet\darknet.sln` and do the: Build -> Build darknet
2016-12-02 23:00:47 +08:00
2016-12-03 01:08:03 +08:00
2. If you have other version of CUDA (not 8.0) then open `build\darknet\darknet.vcxproj` by using Notepad, find 2 places with "CUDA 8.0" and change it to your CUDA-version, then do step 1
2016-12-02 23:00:47 +08:00
3. If you have other version of OpenCV 2.4.x (not 2.4.9) then you should change pathes after `\darknet.sln` is opened
3.1 (right click on project) -> properties -> C/C++ -> General -> Additional Include Directories
3.2 (right click on project) -> properties -> Linker -> General -> Additional Library Directories
4. If you have other version of OpenCV 3.x (not 2.4.x) then you should change many places in code by yourself.
### How to compile (custom):
Also, you can to create your own `darknet.sln` & `darknet.vcxproj` , this example for CUDA 8.0 and OpenCV 2.4.9
Then add to your created project:
- (right click on project) -> properties -> C/C++ -> General -> Additional Include Directories, put here:
`C:\opencv_2.4.9\opencv\build\include;..\..\3rdparty\include;%(AdditionalIncludeDirectories);$(CudaToolkitIncludeDir);$(cudnn)\include`
- right click on project -> Build dependecies -> Build Customizations -> set check on CUDA 8.0 or what version you have - for example as here: http://devblogs.nvidia.com/parallelforall/wp-content/uploads/2015/01/VS2013-R-5.jpg
2016-12-06 23:22:32 +08:00
- add to project all .c & .cu files from `\src`
2016-12-02 23:00:47 +08:00
- (right click on project) -> properties -> Linker -> General -> Additional Library Directories, put here:
`C:\opencv_2.4.9\opencv\build\x64\vc12\lib;$(CUDA_PATH)lib\$(PlatformName);$(cudnn)\lib\x64;%(AdditionalLibraryDirectories)`
- (right click on project) -> properties -> Linker -> Input -> Additional dependecies, put here:
`..\..\3rdparty\lib\x64\pthreadVC2.lib;cublas.lib;curand.lib;cudart.lib;cudnn.lib;%(AdditionalDependencies)`
- (right click on project) -> properties -> C/C++ -> Preprocessor -> Preprocessor Definitions
`OPENCV;_TIMESPEC_DEFINED;_CRT_SECURE_NO_WARNINGS;GPU;WIN32;NDEBUG;_CONSOLE;_LIB;%(PreprocessorDefinitions)`
2016-12-13 21:23:16 +08:00
- compile to .exe (X64 & Release) and put .dll-s near with .exe:
2016-12-02 23:00:47 +08:00
2016-12-06 23:22:32 +08:00
`pthreadVC2.dll, pthreadGC2.dll` from \3rdparty\dll\x64
2016-12-02 23:00:47 +08:00
`cusolver64_80.dll, curand64_80.dll, cudart64_80.dll, cublas64_80.dll` - 80 for CUDA 8.0 or your version, from C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\bin
2015-07-11 08:33:24 +08:00
2015-08-06 07:56:24 +08:00
2016-12-13 21:23:16 +08:00
## How to train (Pascal VOC Data):
1. Download pre-trained weights for the convolutional layers (76 MB): http://pjreddie.com/media/files/darknet19_448.conv.23 and put to the directory `build\darknet\x64`
2. Download The Pascal VOC Data and unpack it to directory `build\darknet\x64\data\voc` : http://pjreddie.com/projects/pascal-voc-dataset-mirror/ will be created file `voc_label.py` and `\VOCdevkit\` dir
3. Download and install Python for Windows: https://www.python.org/ftp/python/3.5.2/python-3.5.2-amd64.exe
4. Run command: `python build\darknet\x64\data\voc\voc_label.py` (to generate files: 2007_test.txt, 2007_train.txt, 2007_val.txt, 2012_train.txt, 2012_val.txt)
5. Run command: `type 2007_train.txt 2007_val.txt 2012_*.txt > train.txt`
6. Start training by using `train_voc.cmd` or by using the command line: `darknet.exe detector train data/voc.data yolo-voc.cfg darknet19_448.conv.23`
If required change pathes in the file `build\darknet\x64\data\voc.data`
More information about training by the link: http://pjreddie.com/darknet/yolo/#train-voc