mirror of https://github.com/AlexeyAB/darknet.git
202 lines
6.8 KiB
Python
202 lines
6.8 KiB
Python
|
# --------------------------------------------------------
|
||
|
# Fast/er R-CNN
|
||
|
# Licensed under The MIT License [see LICENSE for details]
|
||
|
# Written by Bharath Hariharan
|
||
|
# --------------------------------------------------------
|
||
|
|
||
|
import xml.etree.ElementTree as ET
|
||
|
import os
|
||
|
#import cPickle
|
||
|
import _pickle as cPickle
|
||
|
import numpy as np
|
||
|
|
||
|
def parse_rec(filename):
|
||
|
""" Parse a PASCAL VOC xml file """
|
||
|
tree = ET.parse(filename)
|
||
|
objects = []
|
||
|
for obj in tree.findall('object'):
|
||
|
obj_struct = {}
|
||
|
obj_struct['name'] = obj.find('name').text
|
||
|
#obj_struct['pose'] = obj.find('pose').text
|
||
|
#obj_struct['truncated'] = int(obj.find('truncated').text)
|
||
|
obj_struct['difficult'] = int(obj.find('difficult').text)
|
||
|
bbox = obj.find('bndbox')
|
||
|
obj_struct['bbox'] = [int(bbox.find('xmin').text),
|
||
|
int(bbox.find('ymin').text),
|
||
|
int(bbox.find('xmax').text),
|
||
|
int(bbox.find('ymax').text)]
|
||
|
objects.append(obj_struct)
|
||
|
|
||
|
return objects
|
||
|
|
||
|
def voc_ap(rec, prec, use_07_metric=False):
|
||
|
""" ap = voc_ap(rec, prec, [use_07_metric])
|
||
|
Compute VOC AP given precision and recall.
|
||
|
If use_07_metric is true, uses the
|
||
|
VOC 07 11 point method (default:False).
|
||
|
"""
|
||
|
if use_07_metric:
|
||
|
# 11 point metric
|
||
|
ap = 0.
|
||
|
for t in np.arange(0., 1.1, 0.1):
|
||
|
if np.sum(rec >= t) == 0:
|
||
|
p = 0
|
||
|
else:
|
||
|
p = np.max(prec[rec >= t])
|
||
|
ap = ap + p / 11.
|
||
|
else:
|
||
|
# correct AP calculation
|
||
|
# first append sentinel values at the end
|
||
|
mrec = np.concatenate(([0.], rec, [1.]))
|
||
|
mpre = np.concatenate(([0.], prec, [0.]))
|
||
|
|
||
|
# compute the precision envelope
|
||
|
for i in range(mpre.size - 1, 0, -1):
|
||
|
mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])
|
||
|
|
||
|
# to calculate area under PR curve, look for points
|
||
|
# where X axis (recall) changes value
|
||
|
i = np.where(mrec[1:] != mrec[:-1])[0]
|
||
|
|
||
|
# and sum (\Delta recall) * prec
|
||
|
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
|
||
|
return ap
|
||
|
|
||
|
def voc_eval(detpath,
|
||
|
annopath,
|
||
|
imagesetfile,
|
||
|
classname,
|
||
|
cachedir,
|
||
|
ovthresh=0.5,
|
||
|
use_07_metric=False):
|
||
|
"""rec, prec, ap = voc_eval(detpath,
|
||
|
annopath,
|
||
|
imagesetfile,
|
||
|
classname,
|
||
|
[ovthresh],
|
||
|
[use_07_metric])
|
||
|
|
||
|
Top level function that does the PASCAL VOC evaluation.
|
||
|
|
||
|
detpath: Path to detections
|
||
|
detpath.format(classname) should produce the detection results file.
|
||
|
annopath: Path to annotations
|
||
|
annopath.format(imagename) should be the xml annotations file.
|
||
|
imagesetfile: Text file containing the list of images, one image per line.
|
||
|
classname: Category name (duh)
|
||
|
cachedir: Directory for caching the annotations
|
||
|
[ovthresh]: Overlap threshold (default = 0.5)
|
||
|
[use_07_metric]: Whether to use VOC07's 11 point AP computation
|
||
|
(default False)
|
||
|
"""
|
||
|
# assumes detections are in detpath.format(classname)
|
||
|
# assumes annotations are in annopath.format(imagename)
|
||
|
# assumes imagesetfile is a text file with each line an image name
|
||
|
# cachedir caches the annotations in a pickle file
|
||
|
|
||
|
# first load gt
|
||
|
if not os.path.isdir(cachedir):
|
||
|
os.mkdir(cachedir)
|
||
|
cachefile = os.path.join(cachedir, 'annots.pkl')
|
||
|
# read list of images
|
||
|
with open(imagesetfile, 'r') as f:
|
||
|
lines = f.readlines()
|
||
|
imagenames = [x.strip() for x in lines]
|
||
|
|
||
|
if not os.path.isfile(cachefile):
|
||
|
# load annots
|
||
|
recs = {}
|
||
|
for i, imagename in enumerate(imagenames):
|
||
|
recs[imagename] = parse_rec(annopath.format(imagename))
|
||
|
#if i % 100 == 0:
|
||
|
#print('Reading annotation for {:d}/{:d}').format(i + 1, len(imagenames))
|
||
|
# save
|
||
|
#print('Saving cached annotations to {:s}').format(cachefile)
|
||
|
with open(cachefile, 'wb') as f:
|
||
|
cPickle.dump(recs, f)
|
||
|
else:
|
||
|
# load
|
||
|
print('!!! cachefile = ',cachefile)
|
||
|
with open(cachefile, 'rb') as f:
|
||
|
recs = cPickle.load(f)
|
||
|
|
||
|
# extract gt objects for this class
|
||
|
class_recs = {}
|
||
|
npos = 0
|
||
|
for imagename in imagenames:
|
||
|
R = [obj for obj in recs[imagename] if obj['name'] == classname]
|
||
|
bbox = np.array([x['bbox'] for x in R])
|
||
|
difficult = np.array([x['difficult'] for x in R]).astype(np.bool)
|
||
|
det = [False] * len(R)
|
||
|
npos = npos + sum(~difficult)
|
||
|
class_recs[imagename] = {'bbox': bbox,
|
||
|
'difficult': difficult,
|
||
|
'det': det}
|
||
|
|
||
|
# read dets
|
||
|
detfile = detpath.format(classname)
|
||
|
with open(detfile, 'r') as f:
|
||
|
lines = f.readlines()
|
||
|
|
||
|
splitlines = [x.strip().split(' ') for x in lines]
|
||
|
image_ids = [x[0] for x in splitlines]
|
||
|
confidence = np.array([float(x[1]) for x in splitlines])
|
||
|
BB = np.array([[float(z) for z in x[2:]] for x in splitlines])
|
||
|
|
||
|
# sort by confidence
|
||
|
sorted_ind = np.argsort(-confidence)
|
||
|
sorted_scores = np.sort(-confidence)
|
||
|
BB = BB[sorted_ind, :]
|
||
|
image_ids = [image_ids[x] for x in sorted_ind]
|
||
|
|
||
|
# go down dets and mark TPs and FPs
|
||
|
nd = len(image_ids)
|
||
|
tp = np.zeros(nd)
|
||
|
fp = np.zeros(nd)
|
||
|
for d in range(nd):
|
||
|
R = class_recs[image_ids[d]]
|
||
|
bb = BB[d, :].astype(float)
|
||
|
ovmax = -np.inf
|
||
|
BBGT = R['bbox'].astype(float)
|
||
|
|
||
|
if BBGT.size > 0:
|
||
|
# compute overlaps
|
||
|
# intersection
|
||
|
ixmin = np.maximum(BBGT[:, 0], bb[0])
|
||
|
iymin = np.maximum(BBGT[:, 1], bb[1])
|
||
|
ixmax = np.minimum(BBGT[:, 2], bb[2])
|
||
|
iymax = np.minimum(BBGT[:, 3], bb[3])
|
||
|
iw = np.maximum(ixmax - ixmin + 1., 0.)
|
||
|
ih = np.maximum(iymax - iymin + 1., 0.)
|
||
|
inters = iw * ih
|
||
|
|
||
|
# union
|
||
|
uni = ((bb[2] - bb[0] + 1.) * (bb[3] - bb[1] + 1.) +
|
||
|
(BBGT[:, 2] - BBGT[:, 0] + 1.) *
|
||
|
(BBGT[:, 3] - BBGT[:, 1] + 1.) - inters)
|
||
|
|
||
|
overlaps = inters / uni
|
||
|
ovmax = np.max(overlaps)
|
||
|
jmax = np.argmax(overlaps)
|
||
|
|
||
|
if ovmax > ovthresh:
|
||
|
if not R['difficult'][jmax]:
|
||
|
if not R['det'][jmax]:
|
||
|
tp[d] = 1.
|
||
|
R['det'][jmax] = 1
|
||
|
else:
|
||
|
fp[d] = 1.
|
||
|
else:
|
||
|
fp[d] = 1.
|
||
|
|
||
|
# compute precision recall
|
||
|
fp = np.cumsum(fp)
|
||
|
tp = np.cumsum(tp)
|
||
|
rec = tp / float(npos)
|
||
|
# avoid divide by zero in case the first detection matches a difficult
|
||
|
# ground truth
|
||
|
prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps)
|
||
|
ap = voc_ap(rec, prec, use_07_metric)
|
||
|
|
||
|
return rec, prec, ap
|