mirror of https://github.com/AlexeyAB/darknet.git
707 lines
7.4 KiB
INI
707 lines
7.4 KiB
INI
|
[net]
|
||
|
# Testing
|
||
|
#batch=1
|
||
|
#subdivisions=1
|
||
|
# Training
|
||
|
batch=64
|
||
|
subdivisions=1
|
||
|
width=416
|
||
|
height=416
|
||
|
channels=3
|
||
|
momentum=0.9
|
||
|
decay=0.0005
|
||
|
angle=0
|
||
|
saturation = 1.5
|
||
|
exposure = 1.5
|
||
|
hue=.1
|
||
|
|
||
|
learning_rate=0.00261
|
||
|
burn_in=1000
|
||
|
|
||
|
max_batches = 2000200
|
||
|
policy=steps
|
||
|
steps=1600000,1800000
|
||
|
scales=.1,.1
|
||
|
|
||
|
# 0
|
||
|
[convolutional]
|
||
|
batch_normalize=1
|
||
|
filters=32
|
||
|
size=3
|
||
|
stride=2
|
||
|
pad=1
|
||
|
activation=leaky
|
||
|
|
||
|
# 1
|
||
|
[convolutional]
|
||
|
batch_normalize=1
|
||
|
filters=64
|
||
|
size=3
|
||
|
stride=2
|
||
|
pad=1
|
||
|
activation=leaky
|
||
|
|
||
|
[convolutional]
|
||
|
batch_normalize=1
|
||
|
filters=32
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=1
|
||
|
activation=leaky
|
||
|
|
||
|
[route]
|
||
|
layers=-2
|
||
|
|
||
|
[convolutional]
|
||
|
batch_normalize=1
|
||
|
filters=32
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=1
|
||
|
activation=leaky
|
||
|
|
||
|
[convolutional]
|
||
|
batch_normalize=1
|
||
|
filters=32
|
||
|
size=3
|
||
|
stride=1
|
||
|
pad=1
|
||
|
activation=leaky
|
||
|
|
||
|
[convolutional]
|
||
|
batch_normalize=1
|
||
|
filters=32
|
||
|
size=3
|
||
|
stride=1
|
||
|
pad=1
|
||
|
activation=leaky
|
||
|
|
||
|
[route]
|
||
|
layers = -5,-3,-2,-1
|
||
|
|
||
|
# 8
|
||
|
[convolutional]
|
||
|
batch_normalize=1
|
||
|
filters=64
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=1
|
||
|
activation=leaky
|
||
|
|
||
|
[maxpool]
|
||
|
size=2
|
||
|
stride=2
|
||
|
|
||
|
[convolutional]
|
||
|
batch_normalize=1
|
||
|
filters=64
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=1
|
||
|
activation=leaky
|
||
|
|
||
|
[route]
|
||
|
layers=-2
|
||
|
|
||
|
[convolutional]
|
||
|
batch_normalize=1
|
||
|
filters=64
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=1
|
||
|
activation=leaky
|
||
|
|
||
|
[convolutional]
|
||
|
batch_normalize=1
|
||
|
filters=64
|
||
|
size=3
|
||
|
stride=1
|
||
|
pad=1
|
||
|
activation=leaky
|
||
|
|
||
|
[convolutional]
|
||
|
batch_normalize=1
|
||
|
filters=64
|
||
|
size=3
|
||
|
stride=1
|
||
|
pad=1
|
||
|
activation=leaky
|
||
|
|
||
|
[route]
|
||
|
layers = -5,-3,-2,-1
|
||
|
|
||
|
# 16
|
||
|
[convolutional]
|
||
|
batch_normalize=1
|
||
|
filters=128
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=1
|
||
|
activation=leaky
|
||
|
|
||
|
[maxpool]
|
||
|
size=2
|
||
|
stride=2
|
||
|
|
||
|
[convolutional]
|
||
|
batch_normalize=1
|
||
|
filters=128
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=1
|
||
|
activation=leaky
|
||
|
|
||
|
[route]
|
||
|
layers=-2
|
||
|
|
||
|
[convolutional]
|
||
|
batch_normalize=1
|
||
|
filters=128
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=1
|
||
|
activation=leaky
|
||
|
|
||
|
[convolutional]
|
||
|
batch_normalize=1
|
||
|
filters=128
|
||
|
size=3
|
||
|
stride=1
|
||
|
pad=1
|
||
|
activation=leaky
|
||
|
|
||
|
[convolutional]
|
||
|
batch_normalize=1
|
||
|
filters=128
|
||
|
size=3
|
||
|
stride=1
|
||
|
pad=1
|
||
|
activation=leaky
|
||
|
|
||
|
[route]
|
||
|
layers = -5,-3,-2,-1
|
||
|
|
||
|
# 24
|
||
|
[convolutional]
|
||
|
batch_normalize=1
|
||
|
filters=256
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=1
|
||
|
activation=leaky
|
||
|
|
||
|
[maxpool]
|
||
|
size=2
|
||
|
stride=2
|
||
|
|
||
|
[convolutional]
|
||
|
batch_normalize=1
|
||
|
filters=256
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=1
|
||
|
activation=leaky
|
||
|
|
||
|
[route]
|
||
|
layers=-2
|
||
|
|
||
|
[convolutional]
|
||
|
batch_normalize=1
|
||
|
filters=256
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=1
|
||
|
activation=leaky
|
||
|
|
||
|
[convolutional]
|
||
|
batch_normalize=1
|
||
|
filters=256
|
||
|
size=3
|
||
|
stride=1
|
||
|
pad=1
|
||
|
activation=leaky
|
||
|
|
||
|
[convolutional]
|
||
|
batch_normalize=1
|
||
|
filters=256
|
||
|
size=3
|
||
|
stride=1
|
||
|
pad=1
|
||
|
activation=leaky
|
||
|
|
||
|
[route]
|
||
|
layers = -5,-3,-2,-1
|
||
|
|
||
|
# 32
|
||
|
[convolutional]
|
||
|
batch_normalize=1
|
||
|
filters=512
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=1
|
||
|
activation=leaky
|
||
|
|
||
|
|
||
|
##################################
|
||
|
|
||
|
### SPPCSP ###
|
||
|
[convolutional]
|
||
|
batch_normalize=1
|
||
|
filters=256
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=1
|
||
|
activation=leaky
|
||
|
|
||
|
[route]
|
||
|
layers = -2
|
||
|
|
||
|
[convolutional]
|
||
|
batch_normalize=1
|
||
|
filters=256
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=1
|
||
|
activation=leaky
|
||
|
|
||
|
### SPP ###
|
||
|
[maxpool]
|
||
|
stride=1
|
||
|
size=5
|
||
|
|
||
|
[route]
|
||
|
layers=-2
|
||
|
|
||
|
[maxpool]
|
||
|
stride=1
|
||
|
size=9
|
||
|
|
||
|
[route]
|
||
|
layers=-4
|
||
|
|
||
|
[maxpool]
|
||
|
stride=1
|
||
|
size=13
|
||
|
|
||
|
[route]
|
||
|
layers=-1,-3,-5,-6
|
||
|
### End SPP ###
|
||
|
|
||
|
[convolutional]
|
||
|
batch_normalize=1
|
||
|
filters=256
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=1
|
||
|
activation=leaky
|
||
|
|
||
|
[route]
|
||
|
layers = -10,-1
|
||
|
|
||
|
# 44
|
||
|
[convolutional]
|
||
|
batch_normalize=1
|
||
|
filters=256
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=1
|
||
|
activation=leaky
|
||
|
### End SPPCSP ###
|
||
|
|
||
|
[convolutional]
|
||
|
batch_normalize=1
|
||
|
filters=128
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=1
|
||
|
activation=leaky
|
||
|
|
||
|
[upsample]
|
||
|
stride=2
|
||
|
|
||
|
[route]
|
||
|
layers = 24
|
||
|
|
||
|
[convolutional]
|
||
|
batch_normalize=1
|
||
|
filters=128
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=1
|
||
|
activation=leaky
|
||
|
|
||
|
[route]
|
||
|
layers = -1,-3
|
||
|
|
||
|
[convolutional]
|
||
|
batch_normalize=1
|
||
|
filters=64
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=1
|
||
|
activation=leaky
|
||
|
|
||
|
[route]
|
||
|
layers=-2
|
||
|
|
||
|
[convolutional]
|
||
|
batch_normalize=1
|
||
|
filters=64
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=1
|
||
|
activation=leaky
|
||
|
|
||
|
[convolutional]
|
||
|
batch_normalize=1
|
||
|
filters=64
|
||
|
size=3
|
||
|
stride=1
|
||
|
pad=1
|
||
|
activation=leaky
|
||
|
|
||
|
[convolutional]
|
||
|
batch_normalize=1
|
||
|
filters=64
|
||
|
size=3
|
||
|
stride=1
|
||
|
pad=1
|
||
|
activation=leaky
|
||
|
|
||
|
[route]
|
||
|
layers = -5,-3,-2,-1
|
||
|
|
||
|
# 56
|
||
|
[convolutional]
|
||
|
batch_normalize=1
|
||
|
filters=128
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=1
|
||
|
activation=leaky
|
||
|
|
||
|
[convolutional]
|
||
|
batch_normalize=1
|
||
|
filters=64
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=1
|
||
|
activation=leaky
|
||
|
|
||
|
[upsample]
|
||
|
stride=2
|
||
|
|
||
|
[route]
|
||
|
layers = 16
|
||
|
|
||
|
[convolutional]
|
||
|
batch_normalize=1
|
||
|
filters=64
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=1
|
||
|
activation=leaky
|
||
|
|
||
|
[route]
|
||
|
layers = -1,-3
|
||
|
|
||
|
[convolutional]
|
||
|
batch_normalize=1
|
||
|
filters=32
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=1
|
||
|
activation=leaky
|
||
|
|
||
|
[route]
|
||
|
layers=-2
|
||
|
|
||
|
[convolutional]
|
||
|
batch_normalize=1
|
||
|
filters=32
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=1
|
||
|
activation=leaky
|
||
|
|
||
|
[convolutional]
|
||
|
batch_normalize=1
|
||
|
filters=32
|
||
|
size=3
|
||
|
stride=1
|
||
|
pad=1
|
||
|
activation=leaky
|
||
|
|
||
|
[convolutional]
|
||
|
batch_normalize=1
|
||
|
filters=32
|
||
|
size=3
|
||
|
stride=1
|
||
|
pad=1
|
||
|
activation=leaky
|
||
|
|
||
|
[route]
|
||
|
layers = -5,-3,-2,-1
|
||
|
|
||
|
# 68
|
||
|
[convolutional]
|
||
|
batch_normalize=1
|
||
|
filters=64
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=1
|
||
|
activation=leaky
|
||
|
|
||
|
##########################
|
||
|
|
||
|
[convolutional]
|
||
|
batch_normalize=1
|
||
|
size=3
|
||
|
stride=2
|
||
|
pad=1
|
||
|
filters=128
|
||
|
activation=leaky
|
||
|
|
||
|
[route]
|
||
|
layers = -1,56
|
||
|
|
||
|
[convolutional]
|
||
|
batch_normalize=1
|
||
|
filters=64
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=1
|
||
|
activation=leaky
|
||
|
|
||
|
[route]
|
||
|
layers=-2
|
||
|
|
||
|
[convolutional]
|
||
|
batch_normalize=1
|
||
|
filters=64
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=1
|
||
|
activation=leaky
|
||
|
|
||
|
[convolutional]
|
||
|
batch_normalize=1
|
||
|
filters=64
|
||
|
size=3
|
||
|
stride=1
|
||
|
pad=1
|
||
|
activation=leaky
|
||
|
|
||
|
[convolutional]
|
||
|
batch_normalize=1
|
||
|
filters=64
|
||
|
size=3
|
||
|
stride=1
|
||
|
pad=1
|
||
|
activation=leaky
|
||
|
|
||
|
[route]
|
||
|
layers = -5,-3,-2,-1
|
||
|
|
||
|
# 77
|
||
|
[convolutional]
|
||
|
batch_normalize=1
|
||
|
filters=128
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=1
|
||
|
activation=leaky
|
||
|
|
||
|
[convolutional]
|
||
|
batch_normalize=1
|
||
|
size=3
|
||
|
stride=2
|
||
|
pad=1
|
||
|
filters=256
|
||
|
activation=leaky
|
||
|
|
||
|
[route]
|
||
|
layers = -1,44
|
||
|
|
||
|
[convolutional]
|
||
|
batch_normalize=1
|
||
|
filters=128
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=1
|
||
|
activation=leaky
|
||
|
|
||
|
[route]
|
||
|
layers=-2
|
||
|
|
||
|
[convolutional]
|
||
|
batch_normalize=1
|
||
|
filters=128
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=1
|
||
|
activation=leaky
|
||
|
|
||
|
[convolutional]
|
||
|
batch_normalize=1
|
||
|
filters=128
|
||
|
size=3
|
||
|
stride=1
|
||
|
pad=1
|
||
|
activation=leaky
|
||
|
|
||
|
[convolutional]
|
||
|
batch_normalize=1
|
||
|
filters=128
|
||
|
size=3
|
||
|
stride=1
|
||
|
pad=1
|
||
|
activation=leaky
|
||
|
|
||
|
[route]
|
||
|
layers = -5,-3,-2,-1
|
||
|
|
||
|
# 86
|
||
|
[convolutional]
|
||
|
batch_normalize=1
|
||
|
filters=256
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=1
|
||
|
activation=leaky
|
||
|
|
||
|
#############################
|
||
|
|
||
|
# ============ End of Neck ============ #
|
||
|
|
||
|
# ============ Head ============ #
|
||
|
|
||
|
|
||
|
# P3
|
||
|
[route]
|
||
|
layers = 68
|
||
|
|
||
|
[convolutional]
|
||
|
batch_normalize=1
|
||
|
size=3
|
||
|
stride=1
|
||
|
pad=1
|
||
|
filters=128
|
||
|
activation=leaky
|
||
|
|
||
|
[convolutional]
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=1
|
||
|
filters=255
|
||
|
#activation=linear
|
||
|
activation=logistic
|
||
|
|
||
|
[yolo]
|
||
|
mask = 0,1,2
|
||
|
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
|
||
|
classes=80
|
||
|
num=9
|
||
|
jitter=.1
|
||
|
scale_x_y = 2.0
|
||
|
objectness_smooth=1
|
||
|
ignore_thresh = .7
|
||
|
truth_thresh = 1
|
||
|
#random=1
|
||
|
resize=1.5
|
||
|
iou_thresh=0.2
|
||
|
iou_normalizer=0.05
|
||
|
cls_normalizer=0.5
|
||
|
obj_normalizer=1.0
|
||
|
iou_loss=ciou
|
||
|
nms_kind=diounms
|
||
|
beta_nms=0.6
|
||
|
new_coords=1
|
||
|
max_delta=2
|
||
|
|
||
|
|
||
|
# P4
|
||
|
[route]
|
||
|
layers = 77
|
||
|
|
||
|
[convolutional]
|
||
|
batch_normalize=1
|
||
|
size=3
|
||
|
stride=1
|
||
|
pad=1
|
||
|
filters=256
|
||
|
activation=leaky
|
||
|
|
||
|
[convolutional]
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=1
|
||
|
filters=255
|
||
|
#activation=linear
|
||
|
activation=logistic
|
||
|
|
||
|
[yolo]
|
||
|
mask = 3,4,5
|
||
|
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
|
||
|
classes=80
|
||
|
num=9
|
||
|
jitter=.1
|
||
|
scale_x_y = 2.0
|
||
|
objectness_smooth=1
|
||
|
ignore_thresh = .7
|
||
|
truth_thresh = 1
|
||
|
#random=1
|
||
|
resize=1.5
|
||
|
iou_thresh=0.2
|
||
|
iou_normalizer=0.05
|
||
|
cls_normalizer=0.5
|
||
|
obj_normalizer=1.0
|
||
|
iou_loss=ciou
|
||
|
nms_kind=diounms
|
||
|
beta_nms=0.6
|
||
|
new_coords=1
|
||
|
max_delta=2
|
||
|
|
||
|
|
||
|
# P5
|
||
|
[route]
|
||
|
layers = 86
|
||
|
|
||
|
[convolutional]
|
||
|
batch_normalize=1
|
||
|
size=3
|
||
|
stride=1
|
||
|
pad=1
|
||
|
filters=512
|
||
|
activation=leaky
|
||
|
|
||
|
[convolutional]
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=1
|
||
|
filters=255
|
||
|
#activation=linear
|
||
|
activation=logistic
|
||
|
|
||
|
[yolo]
|
||
|
mask = 6,7,8
|
||
|
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
|
||
|
classes=80
|
||
|
num=9
|
||
|
jitter=.1
|
||
|
scale_x_y = 2.0
|
||
|
objectness_smooth=1
|
||
|
ignore_thresh = .7
|
||
|
truth_thresh = 1
|
||
|
#random=1
|
||
|
resize=1.5
|
||
|
iou_thresh=0.2
|
||
|
iou_normalizer=0.05
|
||
|
cls_normalizer=0.5
|
||
|
obj_normalizer=1.0
|
||
|
iou_loss=ciou
|
||
|
nms_kind=diounms
|
||
|
beta_nms=0.6
|
||
|
new_coords=1
|
||
|
max_delta=2
|