mirror of https://github.com/AlexeyAB/darknet.git
1073 lines
12 KiB
INI
1073 lines
12 KiB
INI
|
[net]
|
||
|
# Testing
|
||
|
#batch=1
|
||
|
#subdivisions=1
|
||
|
# Training
|
||
|
batch=64
|
||
|
subdivisions=8
|
||
|
width=416
|
||
|
height=416
|
||
|
channels=3
|
||
|
momentum=0.9
|
||
|
decay=0.0005
|
||
|
angle=0
|
||
|
saturation = 1.5
|
||
|
exposure = 1.5
|
||
|
hue=.1
|
||
|
|
||
|
learning_rate=0.001
|
||
|
burn_in=1000
|
||
|
max_batches = 500200
|
||
|
policy=steps
|
||
|
steps=400000,450000
|
||
|
scales=.1,.1
|
||
|
|
||
|
### CONV1 - 1 (1)
|
||
|
# conv1
|
||
|
[convolutional]
|
||
|
filters=32
|
||
|
size=3
|
||
|
pad=1
|
||
|
stride=2
|
||
|
batch_normalize=1
|
||
|
activation=swish
|
||
|
|
||
|
|
||
|
### CONV2 - MBConv1 - 1 (1)
|
||
|
# conv2_1_expand
|
||
|
[convolutional]
|
||
|
filters=32
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=0
|
||
|
batch_normalize=1
|
||
|
activation=swish
|
||
|
|
||
|
# conv2_1_dwise
|
||
|
[convolutional]
|
||
|
groups=32
|
||
|
filters=32
|
||
|
size=3
|
||
|
stride=1
|
||
|
pad=1
|
||
|
batch_normalize=1
|
||
|
activation=swish
|
||
|
|
||
|
|
||
|
#squeeze-n-excitation
|
||
|
[avgpool]
|
||
|
|
||
|
# squeeze ratio r=4 (recommended r=16)
|
||
|
[convolutional]
|
||
|
filters=8
|
||
|
size=1
|
||
|
stride=1
|
||
|
activation=swish
|
||
|
|
||
|
# excitation
|
||
|
[convolutional]
|
||
|
filters=32
|
||
|
size=1
|
||
|
stride=1
|
||
|
activation=logistic
|
||
|
|
||
|
# multiply channels
|
||
|
[scale_channels]
|
||
|
from=-4
|
||
|
|
||
|
|
||
|
# conv2_1_linear
|
||
|
[convolutional]
|
||
|
filters=16
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=0
|
||
|
batch_normalize=1
|
||
|
activation=linear
|
||
|
|
||
|
|
||
|
|
||
|
### CONV3 - MBConv6 - 1 (2)
|
||
|
# conv2_2_expand
|
||
|
[convolutional]
|
||
|
filters=96
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=0
|
||
|
batch_normalize=1
|
||
|
activation=swish
|
||
|
|
||
|
# conv2_2_dwise
|
||
|
[convolutional]
|
||
|
groups=96
|
||
|
filters=96
|
||
|
size=3
|
||
|
pad=1
|
||
|
stride=2
|
||
|
batch_normalize=1
|
||
|
activation=swish
|
||
|
|
||
|
|
||
|
#squeeze-n-excitation
|
||
|
[avgpool]
|
||
|
|
||
|
# squeeze ratio r=8 (recommended r=16)
|
||
|
[convolutional]
|
||
|
filters=16
|
||
|
size=1
|
||
|
stride=1
|
||
|
activation=swish
|
||
|
|
||
|
# excitation
|
||
|
[convolutional]
|
||
|
filters=96
|
||
|
size=1
|
||
|
stride=1
|
||
|
activation=logistic
|
||
|
|
||
|
# multiply channels
|
||
|
[scale_channels]
|
||
|
from=-4
|
||
|
|
||
|
|
||
|
# conv2_2_linear
|
||
|
[convolutional]
|
||
|
filters=24
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=0
|
||
|
batch_normalize=1
|
||
|
activation=linear
|
||
|
|
||
|
|
||
|
### CONV3 - MBConv6 - 2 (2)
|
||
|
# conv3_1_expand
|
||
|
[convolutional]
|
||
|
filters=144
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=0
|
||
|
batch_normalize=1
|
||
|
activation=swish
|
||
|
|
||
|
# conv3_1_dwise
|
||
|
[convolutional]
|
||
|
groups=144
|
||
|
filters=144
|
||
|
size=3
|
||
|
stride=1
|
||
|
pad=1
|
||
|
batch_normalize=1
|
||
|
activation=swish
|
||
|
|
||
|
|
||
|
#squeeze-n-excitation
|
||
|
[avgpool]
|
||
|
|
||
|
# squeeze ratio r=16 (recommended r=16)
|
||
|
[convolutional]
|
||
|
filters=8
|
||
|
size=1
|
||
|
stride=1
|
||
|
activation=swish
|
||
|
|
||
|
# excitation
|
||
|
[convolutional]
|
||
|
filters=144
|
||
|
size=1
|
||
|
stride=1
|
||
|
activation=logistic
|
||
|
|
||
|
# multiply channels
|
||
|
[scale_channels]
|
||
|
from=-4
|
||
|
|
||
|
|
||
|
# conv3_1_linear
|
||
|
[convolutional]
|
||
|
filters=24
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=0
|
||
|
batch_normalize=1
|
||
|
activation=linear
|
||
|
|
||
|
|
||
|
|
||
|
### CONV4 - MBConv6 - 1 (2)
|
||
|
# dropout only before residual connection
|
||
|
[dropout]
|
||
|
probability=.0
|
||
|
|
||
|
# block_3_1
|
||
|
[shortcut]
|
||
|
from=-9
|
||
|
activation=linear
|
||
|
|
||
|
# conv_3_2_expand
|
||
|
[convolutional]
|
||
|
filters=144
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=0
|
||
|
batch_normalize=1
|
||
|
activation=swish
|
||
|
|
||
|
# conv_3_2_dwise
|
||
|
[convolutional]
|
||
|
groups=144
|
||
|
filters=144
|
||
|
size=5
|
||
|
pad=1
|
||
|
stride=2
|
||
|
batch_normalize=1
|
||
|
activation=swish
|
||
|
|
||
|
|
||
|
#squeeze-n-excitation
|
||
|
[avgpool]
|
||
|
|
||
|
# squeeze ratio r=16 (recommended r=16)
|
||
|
[convolutional]
|
||
|
filters=8
|
||
|
size=1
|
||
|
stride=1
|
||
|
activation=swish
|
||
|
|
||
|
# excitation
|
||
|
[convolutional]
|
||
|
filters=144
|
||
|
size=1
|
||
|
stride=1
|
||
|
activation=logistic
|
||
|
|
||
|
# multiply channels
|
||
|
[scale_channels]
|
||
|
from=-4
|
||
|
|
||
|
|
||
|
# conv_3_2_linear
|
||
|
[convolutional]
|
||
|
filters=40
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=0
|
||
|
batch_normalize=1
|
||
|
activation=linear
|
||
|
|
||
|
|
||
|
### CONV4 - MBConv6 - 2 (2)
|
||
|
# conv_4_1_expand
|
||
|
[convolutional]
|
||
|
filters=192
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=0
|
||
|
batch_normalize=1
|
||
|
activation=swish
|
||
|
|
||
|
# conv_4_1_dwise
|
||
|
[convolutional]
|
||
|
groups=192
|
||
|
filters=192
|
||
|
size=5
|
||
|
stride=1
|
||
|
pad=1
|
||
|
batch_normalize=1
|
||
|
activation=swish
|
||
|
|
||
|
|
||
|
#squeeze-n-excitation
|
||
|
[avgpool]
|
||
|
|
||
|
# squeeze ratio r=16 (recommended r=16)
|
||
|
[convolutional]
|
||
|
filters=16
|
||
|
size=1
|
||
|
stride=1
|
||
|
activation=swish
|
||
|
|
||
|
# excitation
|
||
|
[convolutional]
|
||
|
filters=192
|
||
|
size=1
|
||
|
stride=1
|
||
|
activation=logistic
|
||
|
|
||
|
# multiply channels
|
||
|
[scale_channels]
|
||
|
from=-4
|
||
|
|
||
|
|
||
|
# conv_4_1_linear
|
||
|
[convolutional]
|
||
|
filters=40
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=0
|
||
|
batch_normalize=1
|
||
|
activation=linear
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
### CONV5 - MBConv6 - 1 (3)
|
||
|
# dropout only before residual connection
|
||
|
[dropout]
|
||
|
probability=.0
|
||
|
|
||
|
# block_4_2
|
||
|
[shortcut]
|
||
|
from=-9
|
||
|
activation=linear
|
||
|
|
||
|
# conv_4_3_expand
|
||
|
[convolutional]
|
||
|
filters=192
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=0
|
||
|
batch_normalize=1
|
||
|
activation=swish
|
||
|
|
||
|
# conv_4_3_dwise
|
||
|
[convolutional]
|
||
|
groups=192
|
||
|
filters=192
|
||
|
size=3
|
||
|
stride=1
|
||
|
pad=1
|
||
|
batch_normalize=1
|
||
|
activation=swish
|
||
|
|
||
|
|
||
|
#squeeze-n-excitation
|
||
|
[avgpool]
|
||
|
|
||
|
# squeeze ratio r=16 (recommended r=16)
|
||
|
[convolutional]
|
||
|
filters=16
|
||
|
size=1
|
||
|
stride=1
|
||
|
activation=swish
|
||
|
|
||
|
# excitation
|
||
|
[convolutional]
|
||
|
filters=192
|
||
|
size=1
|
||
|
stride=1
|
||
|
activation=logistic
|
||
|
|
||
|
# multiply channels
|
||
|
[scale_channels]
|
||
|
from=-4
|
||
|
|
||
|
|
||
|
# conv_4_3_linear
|
||
|
[convolutional]
|
||
|
filters=80
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=0
|
||
|
batch_normalize=1
|
||
|
activation=linear
|
||
|
|
||
|
|
||
|
### CONV5 - MBConv6 - 2 (3)
|
||
|
# conv_4_4_expand
|
||
|
[convolutional]
|
||
|
filters=384
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=0
|
||
|
batch_normalize=1
|
||
|
activation=swish
|
||
|
|
||
|
# conv_4_4_dwise
|
||
|
[convolutional]
|
||
|
groups=384
|
||
|
filters=384
|
||
|
size=3
|
||
|
stride=1
|
||
|
pad=1
|
||
|
batch_normalize=1
|
||
|
activation=swish
|
||
|
|
||
|
|
||
|
#squeeze-n-excitation
|
||
|
[avgpool]
|
||
|
|
||
|
# squeeze ratio r=16 (recommended r=16)
|
||
|
[convolutional]
|
||
|
filters=24
|
||
|
size=1
|
||
|
stride=1
|
||
|
activation=swish
|
||
|
|
||
|
# excitation
|
||
|
[convolutional]
|
||
|
filters=384
|
||
|
size=1
|
||
|
stride=1
|
||
|
activation=logistic
|
||
|
|
||
|
# multiply channels
|
||
|
[scale_channels]
|
||
|
from=-4
|
||
|
|
||
|
|
||
|
# conv_4_4_linear
|
||
|
[convolutional]
|
||
|
filters=80
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=0
|
||
|
batch_normalize=1
|
||
|
activation=linear
|
||
|
|
||
|
|
||
|
### CONV5 - MBConv6 - 3 (3)
|
||
|
# dropout only before residual connection
|
||
|
[dropout]
|
||
|
probability=.0
|
||
|
|
||
|
# block_4_4
|
||
|
[shortcut]
|
||
|
from=-9
|
||
|
activation=linear
|
||
|
|
||
|
# conv_4_5_expand
|
||
|
[convolutional]
|
||
|
filters=384
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=0
|
||
|
batch_normalize=1
|
||
|
activation=swish
|
||
|
|
||
|
# conv_4_5_dwise
|
||
|
[convolutional]
|
||
|
groups=384
|
||
|
filters=384
|
||
|
size=3
|
||
|
stride=1
|
||
|
pad=1
|
||
|
batch_normalize=1
|
||
|
activation=swish
|
||
|
|
||
|
|
||
|
#squeeze-n-excitation
|
||
|
[avgpool]
|
||
|
|
||
|
# squeeze ratio r=16 (recommended r=16)
|
||
|
[convolutional]
|
||
|
filters=24
|
||
|
size=1
|
||
|
stride=1
|
||
|
activation=swish
|
||
|
|
||
|
# excitation
|
||
|
[convolutional]
|
||
|
filters=384
|
||
|
size=1
|
||
|
stride=1
|
||
|
activation=logistic
|
||
|
|
||
|
# multiply channels
|
||
|
[scale_channels]
|
||
|
from=-4
|
||
|
|
||
|
|
||
|
# conv_4_5_linear
|
||
|
[convolutional]
|
||
|
filters=80
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=0
|
||
|
batch_normalize=1
|
||
|
activation=linear
|
||
|
|
||
|
|
||
|
|
||
|
### CONV6 - MBConv6 - 1 (3)
|
||
|
# dropout only before residual connection
|
||
|
[dropout]
|
||
|
probability=.0
|
||
|
|
||
|
# block_4_6
|
||
|
[shortcut]
|
||
|
from=-9
|
||
|
activation=linear
|
||
|
|
||
|
# conv_4_7_expand
|
||
|
[convolutional]
|
||
|
filters=384
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=0
|
||
|
batch_normalize=1
|
||
|
activation=swish
|
||
|
|
||
|
# conv_4_7_dwise
|
||
|
[convolutional]
|
||
|
groups=384
|
||
|
filters=384
|
||
|
size=5
|
||
|
pad=1
|
||
|
stride=2
|
||
|
batch_normalize=1
|
||
|
activation=swish
|
||
|
|
||
|
|
||
|
#squeeze-n-excitation
|
||
|
[avgpool]
|
||
|
|
||
|
# squeeze ratio r=16 (recommended r=16)
|
||
|
[convolutional]
|
||
|
filters=24
|
||
|
size=1
|
||
|
stride=1
|
||
|
activation=swish
|
||
|
|
||
|
# excitation
|
||
|
[convolutional]
|
||
|
filters=384
|
||
|
size=1
|
||
|
stride=1
|
||
|
activation=logistic
|
||
|
|
||
|
# multiply channels
|
||
|
[scale_channels]
|
||
|
from=-4
|
||
|
|
||
|
|
||
|
# conv_4_7_linear
|
||
|
[convolutional]
|
||
|
filters=112
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=0
|
||
|
batch_normalize=1
|
||
|
activation=linear
|
||
|
|
||
|
|
||
|
### CONV6 - MBConv6 - 2 (3)
|
||
|
# conv_5_1_expand
|
||
|
[convolutional]
|
||
|
filters=576
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=0
|
||
|
batch_normalize=1
|
||
|
activation=swish
|
||
|
|
||
|
# conv_5_1_dwise
|
||
|
[convolutional]
|
||
|
groups=576
|
||
|
filters=576
|
||
|
size=5
|
||
|
stride=1
|
||
|
pad=1
|
||
|
batch_normalize=1
|
||
|
activation=swish
|
||
|
|
||
|
|
||
|
#squeeze-n-excitation
|
||
|
[avgpool]
|
||
|
|
||
|
# squeeze ratio r=16 (recommended r=16)
|
||
|
[convolutional]
|
||
|
filters=32
|
||
|
size=1
|
||
|
stride=1
|
||
|
activation=swish
|
||
|
|
||
|
# excitation
|
||
|
[convolutional]
|
||
|
filters=576
|
||
|
size=1
|
||
|
stride=1
|
||
|
activation=logistic
|
||
|
|
||
|
# multiply channels
|
||
|
[scale_channels]
|
||
|
from=-4
|
||
|
|
||
|
|
||
|
# conv_5_1_linear
|
||
|
[convolutional]
|
||
|
filters=112
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=0
|
||
|
batch_normalize=1
|
||
|
activation=linear
|
||
|
|
||
|
|
||
|
### CONV6 - MBConv6 - 3 (3)
|
||
|
# dropout only before residual connection
|
||
|
[dropout]
|
||
|
probability=.0
|
||
|
|
||
|
# block_5_1
|
||
|
[shortcut]
|
||
|
from=-9
|
||
|
activation=linear
|
||
|
|
||
|
# conv_5_2_expand
|
||
|
[convolutional]
|
||
|
filters=576
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=0
|
||
|
batch_normalize=1
|
||
|
activation=swish
|
||
|
|
||
|
# conv_5_2_dwise
|
||
|
[convolutional]
|
||
|
groups=576
|
||
|
filters=576
|
||
|
size=5
|
||
|
stride=1
|
||
|
pad=1
|
||
|
batch_normalize=1
|
||
|
activation=swish
|
||
|
|
||
|
|
||
|
#squeeze-n-excitation
|
||
|
[avgpool]
|
||
|
|
||
|
# squeeze ratio r=16 (recommended r=16)
|
||
|
[convolutional]
|
||
|
filters=32
|
||
|
size=1
|
||
|
stride=1
|
||
|
activation=swish
|
||
|
|
||
|
# excitation
|
||
|
[convolutional]
|
||
|
filters=576
|
||
|
size=1
|
||
|
stride=1
|
||
|
activation=logistic
|
||
|
|
||
|
# multiply channels
|
||
|
[scale_channels]
|
||
|
from=-4
|
||
|
|
||
|
|
||
|
# conv_5_2_linear
|
||
|
[convolutional]
|
||
|
filters=112
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=0
|
||
|
batch_normalize=1
|
||
|
activation=linear
|
||
|
|
||
|
|
||
|
### CONV7 - MBConv6 - 1 (4)
|
||
|
# dropout only before residual connection
|
||
|
[dropout]
|
||
|
probability=.0
|
||
|
|
||
|
# block_5_2
|
||
|
[shortcut]
|
||
|
from=-9
|
||
|
activation=linear
|
||
|
|
||
|
# conv_5_3_expand
|
||
|
[convolutional]
|
||
|
filters=576
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=0
|
||
|
batch_normalize=1
|
||
|
activation=swish
|
||
|
|
||
|
# conv_5_3_dwise
|
||
|
[convolutional]
|
||
|
groups=576
|
||
|
filters=576
|
||
|
size=5
|
||
|
pad=1
|
||
|
stride=2
|
||
|
batch_normalize=1
|
||
|
activation=swish
|
||
|
|
||
|
|
||
|
#squeeze-n-excitation
|
||
|
[avgpool]
|
||
|
|
||
|
# squeeze ratio r=16 (recommended r=16)
|
||
|
[convolutional]
|
||
|
filters=32
|
||
|
size=1
|
||
|
stride=1
|
||
|
activation=swish
|
||
|
|
||
|
# excitation
|
||
|
[convolutional]
|
||
|
filters=576
|
||
|
size=1
|
||
|
stride=1
|
||
|
activation=logistic
|
||
|
|
||
|
# multiply channels
|
||
|
[scale_channels]
|
||
|
from=-4
|
||
|
|
||
|
|
||
|
# conv_5_3_linear
|
||
|
[convolutional]
|
||
|
filters=192
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=0
|
||
|
batch_normalize=1
|
||
|
activation=linear
|
||
|
|
||
|
|
||
|
### CONV7 - MBConv6 - 2 (4)
|
||
|
# conv_6_1_expand
|
||
|
[convolutional]
|
||
|
filters=960
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=0
|
||
|
batch_normalize=1
|
||
|
activation=swish
|
||
|
|
||
|
# conv_6_1_dwise
|
||
|
[convolutional]
|
||
|
groups=960
|
||
|
filters=960
|
||
|
size=5
|
||
|
stride=1
|
||
|
pad=1
|
||
|
batch_normalize=1
|
||
|
activation=swish
|
||
|
|
||
|
|
||
|
#squeeze-n-excitation
|
||
|
[avgpool]
|
||
|
|
||
|
# squeeze ratio r=16 (recommended r=16)
|
||
|
[convolutional]
|
||
|
filters=64
|
||
|
size=1
|
||
|
stride=1
|
||
|
activation=swish
|
||
|
|
||
|
# excitation
|
||
|
[convolutional]
|
||
|
filters=960
|
||
|
size=1
|
||
|
stride=1
|
||
|
activation=logistic
|
||
|
|
||
|
# multiply channels
|
||
|
[scale_channels]
|
||
|
from=-4
|
||
|
|
||
|
|
||
|
# conv_6_1_linear
|
||
|
[convolutional]
|
||
|
filters=192
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=0
|
||
|
batch_normalize=1
|
||
|
activation=linear
|
||
|
|
||
|
|
||
|
### CONV7 - MBConv6 - 3 (4)
|
||
|
# dropout only before residual connection
|
||
|
[dropout]
|
||
|
probability=.0
|
||
|
|
||
|
# block_6_1
|
||
|
[shortcut]
|
||
|
from=-9
|
||
|
activation=linear
|
||
|
|
||
|
# conv_6_2_expand
|
||
|
[convolutional]
|
||
|
filters=960
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=0
|
||
|
batch_normalize=1
|
||
|
activation=swish
|
||
|
|
||
|
# conv_6_2_dwise
|
||
|
[convolutional]
|
||
|
groups=960
|
||
|
filters=960
|
||
|
size=5
|
||
|
stride=1
|
||
|
pad=1
|
||
|
batch_normalize=1
|
||
|
activation=swish
|
||
|
|
||
|
|
||
|
#squeeze-n-excitation
|
||
|
[avgpool]
|
||
|
|
||
|
# squeeze ratio r=16 (recommended r=16)
|
||
|
[convolutional]
|
||
|
filters=64
|
||
|
size=1
|
||
|
stride=1
|
||
|
activation=swish
|
||
|
|
||
|
# excitation
|
||
|
[convolutional]
|
||
|
filters=960
|
||
|
size=1
|
||
|
stride=1
|
||
|
activation=logistic
|
||
|
|
||
|
# multiply channels
|
||
|
[scale_channels]
|
||
|
from=-4
|
||
|
|
||
|
|
||
|
# conv_6_2_linear
|
||
|
[convolutional]
|
||
|
filters=192
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=0
|
||
|
batch_normalize=1
|
||
|
activation=linear
|
||
|
|
||
|
|
||
|
### CONV7 - MBConv6 - 4 (4)
|
||
|
# dropout only before residual connection
|
||
|
[dropout]
|
||
|
probability=.0
|
||
|
|
||
|
# block_6_1
|
||
|
[shortcut]
|
||
|
from=-9
|
||
|
activation=linear
|
||
|
|
||
|
# conv_6_2_expand
|
||
|
[convolutional]
|
||
|
filters=960
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=0
|
||
|
batch_normalize=1
|
||
|
activation=swish
|
||
|
|
||
|
# conv_6_2_dwise
|
||
|
[convolutional]
|
||
|
groups=960
|
||
|
filters=960
|
||
|
size=5
|
||
|
stride=1
|
||
|
pad=1
|
||
|
batch_normalize=1
|
||
|
activation=swish
|
||
|
|
||
|
|
||
|
#squeeze-n-excitation
|
||
|
[avgpool]
|
||
|
|
||
|
# squeeze ratio r=16 (recommended r=16)
|
||
|
[convolutional]
|
||
|
filters=64
|
||
|
size=1
|
||
|
stride=1
|
||
|
activation=swish
|
||
|
|
||
|
# excitation
|
||
|
[convolutional]
|
||
|
filters=960
|
||
|
size=1
|
||
|
stride=1
|
||
|
activation=logistic
|
||
|
|
||
|
# multiply channels
|
||
|
[scale_channels]
|
||
|
from=-4
|
||
|
|
||
|
|
||
|
# conv_6_2_linear
|
||
|
[convolutional]
|
||
|
filters=192
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=0
|
||
|
batch_normalize=1
|
||
|
activation=linear
|
||
|
|
||
|
|
||
|
|
||
|
### CONV8 - MBConv6 - 1 (1)
|
||
|
# dropout only before residual connection
|
||
|
[dropout]
|
||
|
probability=.0
|
||
|
|
||
|
# block_6_2
|
||
|
[shortcut]
|
||
|
from=-9
|
||
|
activation=linear
|
||
|
|
||
|
# conv_6_3_expand
|
||
|
[convolutional]
|
||
|
filters=960
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=0
|
||
|
batch_normalize=1
|
||
|
activation=swish
|
||
|
|
||
|
# conv_6_3_dwise
|
||
|
[convolutional]
|
||
|
groups=960
|
||
|
filters=960
|
||
|
size=3
|
||
|
stride=1
|
||
|
pad=1
|
||
|
batch_normalize=1
|
||
|
activation=swish
|
||
|
|
||
|
|
||
|
#squeeze-n-excitation
|
||
|
[avgpool]
|
||
|
|
||
|
# squeeze ratio r=16 (recommended r=16)
|
||
|
[convolutional]
|
||
|
filters=64
|
||
|
size=1
|
||
|
stride=1
|
||
|
activation=swish
|
||
|
|
||
|
# excitation
|
||
|
[convolutional]
|
||
|
filters=960
|
||
|
size=1
|
||
|
stride=1
|
||
|
activation=logistic
|
||
|
|
||
|
# multiply channels
|
||
|
[scale_channels]
|
||
|
from=-4
|
||
|
|
||
|
|
||
|
# conv_6_3_linear
|
||
|
[convolutional]
|
||
|
filters=320
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=0
|
||
|
batch_normalize=1
|
||
|
activation=linear
|
||
|
|
||
|
|
||
|
### CONV9 - Conv2d 1x1
|
||
|
# conv_6_4
|
||
|
[convolutional]
|
||
|
filters=1280
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=0
|
||
|
batch_normalize=1
|
||
|
activation=swish
|
||
|
|
||
|
##########################
|
||
|
|
||
|
[convolutional]
|
||
|
batch_normalize=1
|
||
|
filters=256
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=1
|
||
|
activation=leaky
|
||
|
|
||
|
[convolutional]
|
||
|
batch_normalize=1
|
||
|
filters=256
|
||
|
size=3
|
||
|
stride=1
|
||
|
pad=1
|
||
|
activation=leaky
|
||
|
|
||
|
[shortcut]
|
||
|
activation=leaky
|
||
|
from=-2
|
||
|
|
||
|
[convolutional]
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=1
|
||
|
filters=255
|
||
|
activation=linear
|
||
|
|
||
|
|
||
|
|
||
|
[yolo]
|
||
|
mask = 3,4,5
|
||
|
anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
|
||
|
classes=80
|
||
|
num=6
|
||
|
jitter=.3
|
||
|
ignore_thresh = .7
|
||
|
truth_thresh = 1
|
||
|
random=0
|
||
|
|
||
|
[route]
|
||
|
layers = -4
|
||
|
|
||
|
[convolutional]
|
||
|
batch_normalize=1
|
||
|
filters=128
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=1
|
||
|
activation=leaky
|
||
|
|
||
|
[upsample]
|
||
|
stride=2
|
||
|
|
||
|
[shortcut]
|
||
|
activation=leaky
|
||
|
from=90
|
||
|
|
||
|
[convolutional]
|
||
|
batch_normalize=1
|
||
|
filters=128
|
||
|
size=3
|
||
|
stride=1
|
||
|
pad=1
|
||
|
activation=leaky
|
||
|
|
||
|
[shortcut]
|
||
|
activation=leaky
|
||
|
from=-3
|
||
|
|
||
|
[shortcut]
|
||
|
activation=leaky
|
||
|
from=90
|
||
|
|
||
|
[convolutional]
|
||
|
size=1
|
||
|
stride=1
|
||
|
pad=1
|
||
|
filters=255
|
||
|
activation=linear
|
||
|
|
||
|
[yolo]
|
||
|
mask = 1,2,3
|
||
|
anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
|
||
|
classes=80
|
||
|
num=6
|
||
|
jitter=.3
|
||
|
ignore_thresh = .7
|
||
|
truth_thresh = 1
|
||
|
random=0
|
||
|
|