240 lines
5.4 KiB
C
240 lines
5.4 KiB
C
#include <stdio.h>
|
|
#include <ctype.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <errno.h>
|
|
#include "svm.h"
|
|
|
|
int print_null(const char *s,...) {return 0;}
|
|
|
|
static int (*info)(const char *fmt,...) = &printf;
|
|
|
|
struct svm_node *x;
|
|
int max_nr_attr = 64;
|
|
|
|
struct svm_model* model;
|
|
int predict_probability=0;
|
|
|
|
static char *line = NULL;
|
|
static int max_line_len;
|
|
|
|
static char* readline(FILE *input)
|
|
{
|
|
int len;
|
|
|
|
if(fgets(line,max_line_len,input) == NULL)
|
|
return NULL;
|
|
|
|
while(strrchr(line,'\n') == NULL)
|
|
{
|
|
max_line_len *= 2;
|
|
line = (char *) realloc(line,max_line_len);
|
|
len = (int) strlen(line);
|
|
if(fgets(line+len,max_line_len-len,input) == NULL)
|
|
break;
|
|
}
|
|
return line;
|
|
}
|
|
|
|
void exit_input_error(int line_num)
|
|
{
|
|
fprintf(stderr,"Wrong input format at line %d\n", line_num);
|
|
exit(1);
|
|
}
|
|
|
|
void predict(FILE *input, FILE *output)
|
|
{
|
|
int correct = 0;
|
|
int total = 0;
|
|
double error = 0;
|
|
double sump = 0, sumt = 0, sumpp = 0, sumtt = 0, sumpt = 0;
|
|
|
|
int svm_type=svm_get_svm_type(model);
|
|
int nr_class=svm_get_nr_class(model);
|
|
double *prob_estimates=NULL;
|
|
int j;
|
|
|
|
if(predict_probability)
|
|
{
|
|
if (svm_type==NU_SVR || svm_type==EPSILON_SVR)
|
|
info("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma=%g\n",svm_get_svr_probability(model));
|
|
else
|
|
{
|
|
int *labels=(int *) malloc(nr_class*sizeof(int));
|
|
svm_get_labels(model,labels);
|
|
prob_estimates = (double *) malloc(nr_class*sizeof(double));
|
|
fprintf(output,"labels");
|
|
for(j=0;j<nr_class;j++)
|
|
fprintf(output," %d",labels[j]);
|
|
fprintf(output,"\n");
|
|
free(labels);
|
|
}
|
|
}
|
|
|
|
max_line_len = 1024;
|
|
line = (char *)malloc(max_line_len*sizeof(char));
|
|
while(readline(input) != NULL)
|
|
{
|
|
int i = 0;
|
|
double target_label, predict_label;
|
|
char *idx, *val, *label, *endptr;
|
|
int inst_max_index = -1; // strtol gives 0 if wrong format, and precomputed kernel has <index> start from 0
|
|
|
|
label = strtok(line," \t\n");
|
|
if(label == NULL) // empty line
|
|
exit_input_error(total+1);
|
|
|
|
target_label = strtod(label,&endptr);
|
|
if(endptr == label || *endptr != '\0')
|
|
exit_input_error(total+1);
|
|
|
|
while(1)
|
|
{
|
|
if(i>=max_nr_attr-1) // need one more for index = -1
|
|
{
|
|
max_nr_attr *= 2;
|
|
x = (struct svm_node *) realloc(x,max_nr_attr*sizeof(struct svm_node));
|
|
}
|
|
|
|
idx = strtok(NULL,":");
|
|
val = strtok(NULL," \t");
|
|
|
|
if(val == NULL)
|
|
break;
|
|
errno = 0;
|
|
x[i].index = (int) strtol(idx,&endptr,10);
|
|
if(endptr == idx || errno != 0 || *endptr != '\0' || x[i].index <= inst_max_index)
|
|
exit_input_error(total+1);
|
|
else
|
|
inst_max_index = x[i].index;
|
|
|
|
errno = 0;
|
|
x[i].value = strtod(val,&endptr);
|
|
if(endptr == val || errno != 0 || (*endptr != '\0' && !isspace(*endptr)))
|
|
exit_input_error(total+1);
|
|
|
|
++i;
|
|
}
|
|
x[i].index = -1;
|
|
|
|
if (predict_probability && (svm_type==C_SVC || svm_type==NU_SVC))
|
|
{
|
|
predict_label = svm_predict_probability(model,x,prob_estimates);
|
|
fprintf(output,"%g",predict_label);
|
|
for(j=0;j<nr_class;j++)
|
|
fprintf(output," %g",prob_estimates[j]);
|
|
fprintf(output,"\n");
|
|
}
|
|
else
|
|
{
|
|
predict_label = svm_predict(model,x);
|
|
fprintf(output,"%g\n",predict_label);
|
|
}
|
|
|
|
if(predict_label == target_label)
|
|
++correct;
|
|
error += (predict_label-target_label)*(predict_label-target_label);
|
|
sump += predict_label;
|
|
sumt += target_label;
|
|
sumpp += predict_label*predict_label;
|
|
sumtt += target_label*target_label;
|
|
sumpt += predict_label*target_label;
|
|
++total;
|
|
}
|
|
if (svm_type==NU_SVR || svm_type==EPSILON_SVR)
|
|
{
|
|
info("Mean squared error = %g (regression)\n",error/total);
|
|
info("Squared correlation coefficient = %g (regression)\n",
|
|
((total*sumpt-sump*sumt)*(total*sumpt-sump*sumt))/
|
|
((total*sumpp-sump*sump)*(total*sumtt-sumt*sumt))
|
|
);
|
|
}
|
|
else
|
|
info("Accuracy = %g%% (%d/%d) (classification)\n",
|
|
(double)correct/total*100,correct,total);
|
|
if(predict_probability)
|
|
free(prob_estimates);
|
|
}
|
|
|
|
void exit_with_help()
|
|
{
|
|
printf(
|
|
"Usage: svm-predict [options] test_file model_file output_file\n"
|
|
"options:\n"
|
|
"-b probability_estimates: whether to predict probability estimates, 0 or 1 (default 0); for one-class SVM only 0 is supported\n"
|
|
"-q : quiet mode (no outputs)\n"
|
|
);
|
|
exit(1);
|
|
}
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
FILE *input, *output;
|
|
int i;
|
|
// parse options
|
|
for(i=1;i<argc;i++)
|
|
{
|
|
if(argv[i][0] != '-') break;
|
|
++i;
|
|
switch(argv[i-1][1])
|
|
{
|
|
case 'b':
|
|
predict_probability = atoi(argv[i]);
|
|
break;
|
|
case 'q':
|
|
info = &print_null;
|
|
i--;
|
|
break;
|
|
default:
|
|
fprintf(stderr,"Unknown option: -%c\n", argv[i-1][1]);
|
|
exit_with_help();
|
|
}
|
|
}
|
|
|
|
if(i>=argc-2)
|
|
exit_with_help();
|
|
|
|
input = fopen(argv[i],"r");
|
|
if(input == NULL)
|
|
{
|
|
fprintf(stderr,"can't open input file %s\n",argv[i]);
|
|
exit(1);
|
|
}
|
|
|
|
output = fopen(argv[i+2],"w");
|
|
if(output == NULL)
|
|
{
|
|
fprintf(stderr,"can't open output file %s\n",argv[i+2]);
|
|
exit(1);
|
|
}
|
|
|
|
if((model=svm_load_model(argv[i+1]))==0)
|
|
{
|
|
fprintf(stderr,"can't open model file %s\n",argv[i+1]);
|
|
exit(1);
|
|
}
|
|
|
|
x = (struct svm_node *) malloc(max_nr_attr*sizeof(struct svm_node));
|
|
if(predict_probability)
|
|
{
|
|
if(svm_check_probability_model(model)==0)
|
|
{
|
|
fprintf(stderr,"Model does not support probabiliy estimates\n");
|
|
exit(1);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if(svm_check_probability_model(model)!=0)
|
|
info("Model supports probability estimates, but disabled in prediction.\n");
|
|
}
|
|
|
|
predict(input,output);
|
|
svm_free_and_destroy_model(&model);
|
|
free(x);
|
|
free(line);
|
|
fclose(input);
|
|
fclose(output);
|
|
return 0;
|
|
}
|