# Installation The code was tested on Ubuntu 16.04, with [Anaconda](https://www.anaconda.com/download) Python 3.6 and [PyTorch]((http://pytorch.org/)) v0.4.1. NVIDIA GPUs are needed for both training and testing. After install Anaconda: 0. [Optional but recommended] create a new conda environment. ~~~ conda create --name CenterNet python=3.6 ~~~ And activate the environment. ~~~ conda activate CenterNet ~~~ 1. Install pytorch0.4.1: ~~~ conda install pytorch=0.4.1 torchvision -c pytorch ~~~ And disable cudnn batch normalization(Due to [this issue](https://github.com/xingyizhou/pytorch-pose-hg-3d/issues/16)). ~~~ # PYTORCH=/path/to/pytorch # usually ~/anaconda3/envs/CenterNet/lib/python3.6/site-packages/ # for pytorch v0.4.0 sed -i "1194s/torch\.backends\.cudnn\.enabled/False/g" ${PYTORCH}/torch/nn/functional.py # for pytorch v0.4.1 sed -i "1254s/torch\.backends\.cudnn\.enabled/False/g" ${PYTORCH}/torch/nn/functional.py ~~~ For other pytorch version, you can manually open `torch/nn/functional.py` and find the line with `torch.batch_norm` and replace the `torch.backends.cudnn.enabled` with `False`. We observed slight worse training results without doing so. 2. Install [COCOAPI](https://github.com/cocodataset/cocoapi): ~~~ # COCOAPI=/path/to/clone/cocoapi git clone https://github.com/cocodataset/cocoapi.git $COCOAPI cd $COCOAPI/PythonAPI make python setup.py install --user ~~~ 3. Clone this repo: ~~~ CenterNet_ROOT=/path/to/clone/CenterNet git clone --recursive https://github.com/xingyizhou/CenterNet $CenterNet_ROOT ~~~ 4. Install the requirements ~~~ pip install -r requirements.txt ~~~ 5. Compile deformable convolutional (from [DCNv2](https://github.com/CharlesShang/DCNv2/tree/pytorch_0.4)). ~~~ cd $CenterNet_ROOT/src/lib/models/networks/DCNv2 ./make.sh ~~~ 6. [Optional] Compile NMS if your want to use multi-scale testing or test ExtremeNet. ~~~ cd $CenterNet_ROOT/src/lib/external make ~~~ 7. Download pertained models for [detection]() or [pose estimation]() and move them to `$CenterNet_ROOT/models/`. More models can be found in [Model zoo](MODEL_ZOO.md).