add third-party implementation, fix data setup instruction, and fix typo in dlav0
This commit is contained in:
parent
b1b6991251
commit
b328816ecf
|
@ -119,6 +119,11 @@ We provide scripts for all the experiments in the [experiments](experiments) fol
|
||||||
|
|
||||||
If you are interested in training CenterNet in a new dataset, use CenterNet in a new task, or use a new network architecture for CenterNet, please refer to [DEVELOP.md](readme/DEVELOP.md). Also feel free to send us emails for discussions or suggestions.
|
If you are interested in training CenterNet in a new dataset, use CenterNet in a new task, or use a new network architecture for CenterNet, please refer to [DEVELOP.md](readme/DEVELOP.md). Also feel free to send us emails for discussions or suggestions.
|
||||||
|
|
||||||
|
## Third-party implementation
|
||||||
|
|
||||||
|
- Keras: [keras-centernet](https://github.com/see--/keras-centernet) from [see--](https://github.com/see--).
|
||||||
|
|
||||||
|
|
||||||
## License
|
## License
|
||||||
|
|
||||||
CenterNet itself is released under the MIT License (refer to the LICENSE file for details).
|
CenterNet itself is released under the MIT License (refer to the LICENSE file for details).
|
||||||
|
|
|
@ -91,6 +91,13 @@ If you want to reproduce the results in the paper for benchmark evaluation and t
|
||||||
|
|
||||||
- Run `python convert_kitti_to_coco.py` in `tools` to convert the annotation into COCO format. You can set `DEBUG=True` in `line 5` to visualize the annotation.
|
- Run `python convert_kitti_to_coco.py` in `tools` to convert the annotation into COCO format. You can set `DEBUG=True` in `line 5` to visualize the annotation.
|
||||||
|
|
||||||
|
- Link image folder
|
||||||
|
|
||||||
|
~~~
|
||||||
|
cd ${CenterNet_ROOT}/data/kitti/
|
||||||
|
mkdir images
|
||||||
|
ln -s training/image_2 images/trainval
|
||||||
|
~~~
|
||||||
|
|
||||||
- The data structure should look like:
|
- The data structure should look like:
|
||||||
|
|
||||||
|
|
|
@ -639,8 +639,8 @@ def dla169up(classes, pretrained_base=None, **kwargs):
|
||||||
return model
|
return model
|
||||||
'''
|
'''
|
||||||
|
|
||||||
def get_pose_net(heads, down_ratio=4, head_conv=256):
|
def get_pose_net(num_layers, heads, add_conv=256, down_ratio=4):
|
||||||
model = DLASeg('dla34', heads,
|
model = DLASeg('dla{}'.format(num_layers), heads,
|
||||||
pretrained=True,
|
pretrained=True,
|
||||||
down_ratio=down_ratio,
|
down_ratio=down_ratio,
|
||||||
head_conv=head_conv)
|
head_conv=head_conv)
|
||||||
|
|
Loading…
Reference in New Issue