Fix typo tranpose to transpose

This commit is contained in:
jscsmk 2019-10-11 18:22:43 +09:00
parent 9efed05d53
commit 002263e07f
3 changed files with 28 additions and 28 deletions

View File

@ -4,7 +4,7 @@ from __future__ import print_function
import torch
import torch.nn as nn
from .utils import _gather_feat, _tranpose_and_gather_feat
from .utils import _gather_feat, _transpose_and_gather_feat
def _nms(heat, kernel=3):
pad = (kernel - 1) // 2
@ -213,13 +213,13 @@ def agnex_ct_decode(
if t_regr is not None and l_regr is not None \
and b_regr is not None and r_regr is not None:
t_regr = _tranpose_and_gather_feat(t_regr, t_inds)
t_regr = _transpose_and_gather_feat(t_regr, t_inds)
t_regr = t_regr.view(batch, K, 1, 1, 1, 2)
l_regr = _tranpose_and_gather_feat(l_regr, l_inds)
l_regr = _transpose_and_gather_feat(l_regr, l_inds)
l_regr = l_regr.view(batch, 1, K, 1, 1, 2)
b_regr = _tranpose_and_gather_feat(b_regr, b_inds)
b_regr = _transpose_and_gather_feat(b_regr, b_inds)
b_regr = b_regr.view(batch, 1, 1, K, 1, 2)
r_regr = _tranpose_and_gather_feat(r_regr, r_inds)
r_regr = _transpose_and_gather_feat(r_regr, r_inds)
r_regr = r_regr.view(batch, 1, 1, 1, K, 2)
t_xs = t_xs + t_regr[..., 0]
@ -365,13 +365,13 @@ def exct_decode(
if t_regr is not None and l_regr is not None \
and b_regr is not None and r_regr is not None:
t_regr = _tranpose_and_gather_feat(t_regr, t_inds)
t_regr = _transpose_and_gather_feat(t_regr, t_inds)
t_regr = t_regr.view(batch, K, 1, 1, 1, 2)
l_regr = _tranpose_and_gather_feat(l_regr, l_inds)
l_regr = _transpose_and_gather_feat(l_regr, l_inds)
l_regr = l_regr.view(batch, 1, K, 1, 1, 2)
b_regr = _tranpose_and_gather_feat(b_regr, b_inds)
b_regr = _transpose_and_gather_feat(b_regr, b_inds)
b_regr = b_regr.view(batch, 1, 1, K, 1, 2)
r_regr = _tranpose_and_gather_feat(r_regr, r_inds)
r_regr = _transpose_and_gather_feat(r_regr, r_inds)
r_regr = r_regr.view(batch, 1, 1, 1, K, 2)
t_xs = t_xs + t_regr[..., 0]
@ -431,7 +431,7 @@ def ddd_decode(heat, rot, depth, dim, wh=None, reg=None, K=40):
scores, inds, clses, ys, xs = _topk(heat, K=K)
if reg is not None:
reg = _tranpose_and_gather_feat(reg, inds)
reg = _transpose_and_gather_feat(reg, inds)
reg = reg.view(batch, K, 2)
xs = xs.view(batch, K, 1) + reg[:, :, 0:1]
ys = ys.view(batch, K, 1) + reg[:, :, 1:2]
@ -439,11 +439,11 @@ def ddd_decode(heat, rot, depth, dim, wh=None, reg=None, K=40):
xs = xs.view(batch, K, 1) + 0.5
ys = ys.view(batch, K, 1) + 0.5
rot = _tranpose_and_gather_feat(rot, inds)
rot = _transpose_and_gather_feat(rot, inds)
rot = rot.view(batch, K, 8)
depth = _tranpose_and_gather_feat(depth, inds)
depth = _transpose_and_gather_feat(depth, inds)
depth = depth.view(batch, K, 1)
dim = _tranpose_and_gather_feat(dim, inds)
dim = _transpose_and_gather_feat(dim, inds)
dim = dim.view(batch, K, 3)
clses = clses.view(batch, K, 1).float()
scores = scores.view(batch, K, 1)
@ -451,7 +451,7 @@ def ddd_decode(heat, rot, depth, dim, wh=None, reg=None, K=40):
ys = ys.view(batch, K, 1)
if wh is not None:
wh = _tranpose_and_gather_feat(wh, inds)
wh = _transpose_and_gather_feat(wh, inds)
wh = wh.view(batch, K, 2)
detections = torch.cat(
[xs, ys, scores, rot, depth, dim, wh, clses], dim=2)
@ -470,14 +470,14 @@ def ctdet_decode(heat, wh, reg=None, cat_spec_wh=False, K=100):
scores, inds, clses, ys, xs = _topk(heat, K=K)
if reg is not None:
reg = _tranpose_and_gather_feat(reg, inds)
reg = _transpose_and_gather_feat(reg, inds)
reg = reg.view(batch, K, 2)
xs = xs.view(batch, K, 1) + reg[:, :, 0:1]
ys = ys.view(batch, K, 1) + reg[:, :, 1:2]
else:
xs = xs.view(batch, K, 1) + 0.5
ys = ys.view(batch, K, 1) + 0.5
wh = _tranpose_and_gather_feat(wh, inds)
wh = _transpose_and_gather_feat(wh, inds)
if cat_spec_wh:
wh = wh.view(batch, K, cat, 2)
clses_ind = clses.view(batch, K, 1, 1).expand(batch, K, 1, 2).long()
@ -503,19 +503,19 @@ def multi_pose_decode(
heat = _nms(heat)
scores, inds, clses, ys, xs = _topk(heat, K=K)
kps = _tranpose_and_gather_feat(kps, inds)
kps = _transpose_and_gather_feat(kps, inds)
kps = kps.view(batch, K, num_joints * 2)
kps[..., ::2] += xs.view(batch, K, 1).expand(batch, K, num_joints)
kps[..., 1::2] += ys.view(batch, K, 1).expand(batch, K, num_joints)
if reg is not None:
reg = _tranpose_and_gather_feat(reg, inds)
reg = _transpose_and_gather_feat(reg, inds)
reg = reg.view(batch, K, 2)
xs = xs.view(batch, K, 1) + reg[:, :, 0:1]
ys = ys.view(batch, K, 1) + reg[:, :, 1:2]
else:
xs = xs.view(batch, K, 1) + 0.5
ys = ys.view(batch, K, 1) + 0.5
wh = _tranpose_and_gather_feat(wh, inds)
wh = _transpose_and_gather_feat(wh, inds)
wh = wh.view(batch, K, 2)
clses = clses.view(batch, K, 1).float()
scores = scores.view(batch, K, 1)
@ -532,7 +532,7 @@ def multi_pose_decode(
reg_kps = kps.unsqueeze(3).expand(batch, num_joints, K, K, 2)
hm_score, hm_inds, hm_ys, hm_xs = _topk_channel(hm_hp, K=K) # b x J x K
if hp_offset is not None:
hp_offset = _tranpose_and_gather_feat(
hp_offset = _transpose_and_gather_feat(
hp_offset, hm_inds.view(batch, -1))
hp_offset = hp_offset.view(batch, num_joints, K, 2)
hm_xs = hm_xs + hp_offset[:, :, :, 0]

View File

@ -10,7 +10,7 @@ from __future__ import print_function
import torch
import torch.nn as nn
from .utils import _tranpose_and_gather_feat
from .utils import _transpose_and_gather_feat
import torch.nn.functional as F
@ -132,7 +132,7 @@ class RegLoss(nn.Module):
super(RegLoss, self).__init__()
def forward(self, output, mask, ind, target):
pred = _tranpose_and_gather_feat(output, ind)
pred = _transpose_and_gather_feat(output, ind)
loss = _reg_loss(pred, target, mask)
return loss
@ -141,7 +141,7 @@ class RegL1Loss(nn.Module):
super(RegL1Loss, self).__init__()
def forward(self, output, mask, ind, target):
pred = _tranpose_and_gather_feat(output, ind)
pred = _transpose_and_gather_feat(output, ind)
mask = mask.unsqueeze(2).expand_as(pred).float()
# loss = F.l1_loss(pred * mask, target * mask, reduction='elementwise_mean')
loss = F.l1_loss(pred * mask, target * mask, size_average=False)
@ -153,7 +153,7 @@ class NormRegL1Loss(nn.Module):
super(NormRegL1Loss, self).__init__()
def forward(self, output, mask, ind, target):
pred = _tranpose_and_gather_feat(output, ind)
pred = _transpose_and_gather_feat(output, ind)
mask = mask.unsqueeze(2).expand_as(pred).float()
# loss = F.l1_loss(pred * mask, target * mask, reduction='elementwise_mean')
pred = pred / (target + 1e-4)
@ -167,7 +167,7 @@ class RegWeightedL1Loss(nn.Module):
super(RegWeightedL1Loss, self).__init__()
def forward(self, output, mask, ind, target):
pred = _tranpose_and_gather_feat(output, ind)
pred = _transpose_and_gather_feat(output, ind)
mask = mask.float()
# loss = F.l1_loss(pred * mask, target * mask, reduction='elementwise_mean')
loss = F.l1_loss(pred * mask, target * mask, size_average=False)
@ -179,7 +179,7 @@ class L1Loss(nn.Module):
super(L1Loss, self).__init__()
def forward(self, output, mask, ind, target):
pred = _tranpose_and_gather_feat(output, ind)
pred = _transpose_and_gather_feat(output, ind)
mask = mask.unsqueeze(2).expand_as(pred).float()
loss = F.l1_loss(pred * mask, target * mask, reduction='elementwise_mean')
return loss
@ -189,7 +189,7 @@ class BinRotLoss(nn.Module):
super(BinRotLoss, self).__init__()
def forward(self, output, mask, ind, rotbin, rotres):
pred = _tranpose_and_gather_feat(output, ind)
pred = _transpose_and_gather_feat(output, ind)
loss = compute_rot_loss(pred, rotbin, rotres, mask)
return loss

View File

@ -19,7 +19,7 @@ def _gather_feat(feat, ind, mask=None):
feat = feat.view(-1, dim)
return feat
def _tranpose_and_gather_feat(feat, ind):
def _transpose_and_gather_feat(feat, ind):
feat = feat.permute(0, 2, 3, 1).contiguous()
feat = feat.view(feat.size(0), -1, feat.size(3))
feat = _gather_feat(feat, ind)