ASRT_SpeechRecognition/train_mspeech.py

70 lines
2.2 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
#
# Copyright 2016-2099 Ailemon.net
#
# This file is part of ASRT Speech Recognition Tool.
#
# ASRT is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# ASRT is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with ASRT. If not, see <https://www.gnu.org/licenses/>.
# ============================================================================
"""
@author: nl8590687
用于训练语音识别系统语音模型的程序
"""
import platform as plat
import os
import tensorflow as tf
#from keras.backend.tensorflow_backend import set_session
from SpeechModel251 import ModelSpeech, ModelName
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
#进行配置使用95%的GPU
#config = tf.compat.v1.ConfigProto()
#config.gpu_options.per_process_gpu_memory_fraction = 0.95
#config.gpu_options.allow_growth=True #不全部占满显存, 按需分配
#sess = tf.compat.v1.Session(config=config)
#tf.compat.v1.keras.backend.set_session(sess)
datapath = ''
modelpath = 'model_speech'
if(not os.path.exists(modelpath)): # 判断保存模型的目录是否存在
os.makedirs(modelpath) # 如果不存在,就新建一个,避免之后保存模型的时候炸掉
os.makedirs(modelpath + '/m' + ModelName)
system_type = plat.system() # 由于不同的系统的文件路径表示不一样,需要进行判断
if(system_type == 'Windows'):
datapath = 'D:\\SpeechData'
modelpath = modelpath + '\\'
elif(system_type == 'Linux'):
datapath = 'dataset'
modelpath = modelpath + '/'
else:
print('*[Message] Unknown System\n')
datapath = 'dataset'
modelpath = modelpath + '/'
ms = ModelSpeech(datapath)
#ms.LoadModel(modelpath + 'speech_model251_e_0_step_327500.h5')
ms.TrainModel(datapath, epoch = 50, batch_size = 16, save_step = 5000)