52 lines
1.4 KiB
Python
52 lines
1.4 KiB
Python
#!/usr/bin/env python3
|
||
# -*- coding: utf-8 -*-
|
||
"""
|
||
@author: nl8590687
|
||
用于训练语音识别系统语音模型的程序
|
||
|
||
"""
|
||
import platform as plat
|
||
import os
|
||
|
||
import tensorflow as tf
|
||
from keras.backend.tensorflow_backend import set_session
|
||
|
||
|
||
from SpeechModel251 import ModelSpeech, ModelName
|
||
|
||
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
||
#进行配置,使用95%的GPU
|
||
config = tf.compat.v1.ConfigProto()
|
||
config.gpu_options.per_process_gpu_memory_fraction = 0.95
|
||
#config.gpu_options.allow_growth=True #不全部占满显存, 按需分配
|
||
sess = tf.compat.v1.Session(config=config)
|
||
tf.compat.v1.keras.backend.set_session(sess)
|
||
|
||
|
||
datapath = ''
|
||
modelpath = 'model_speech'
|
||
|
||
|
||
if(not os.path.exists(modelpath)): # 判断保存模型的目录是否存在
|
||
os.makedirs(modelpath) # 如果不存在,就新建一个,避免之后保存模型的时候炸掉
|
||
os.makedirs(modelpath + '/m' + ModelName)
|
||
|
||
system_type = plat.system() # 由于不同的系统的文件路径表示不一样,需要进行判断
|
||
if(system_type == 'Windows'):
|
||
datapath = 'D:\\SpeechData'
|
||
modelpath = modelpath + '\\'
|
||
elif(system_type == 'Linux'):
|
||
datapath = 'dataset'
|
||
modelpath = modelpath + '/'
|
||
else:
|
||
print('*[Message] Unknown System\n')
|
||
datapath = 'dataset'
|
||
modelpath = modelpath + '/'
|
||
|
||
ms = ModelSpeech(datapath)
|
||
|
||
#ms.LoadModel(modelpath + 'speech_model251_e_0_step_327500.model')
|
||
ms.TrainModel(datapath, epoch = 50, batch_size = 16, save_step = 500)
|
||
|
||
|