383 lines
18 KiB
Python
383 lines
18 KiB
Python
#!/usr/bin/env python3
|
||
# -*- coding: utf-8 -*-
|
||
#
|
||
# Copyright 2016-2099 Ailemon.net
|
||
#
|
||
# This file is part of ASRT Speech Recognition Tool.
|
||
#
|
||
# ASRT is free software: you can redistribute it and/or modify
|
||
# it under the terms of the GNU General Public License as published by
|
||
# the Free Software Foundation, either version 3 of the License, or
|
||
# (at your option) any later version.
|
||
# ASRT is distributed in the hope that it will be useful,
|
||
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
# GNU General Public License for more details.
|
||
#
|
||
# You should have received a copy of the GNU General Public License
|
||
# along with ASRT. If not, see <https://www.gnu.org/licenses/>.
|
||
# ============================================================================
|
||
|
||
"""
|
||
@author: nl8590687
|
||
若干声学模型模型的定义
|
||
"""
|
||
|
||
import tensorflow as tf
|
||
from tensorflow.keras.models import Model
|
||
from tensorflow.keras.layers import Dense, Dropout, Input, Reshape, BatchNormalization
|
||
from tensorflow.keras.layers import Lambda, Activation,Conv2D, MaxPooling2D
|
||
from tensorflow.keras import backend as K
|
||
import numpy as np
|
||
|
||
class BaseModel:
|
||
'''
|
||
定义声学模型类型的接口基类
|
||
'''
|
||
def __init__(self):
|
||
self.input_shape = None
|
||
self.output_shape = None
|
||
|
||
def get_model(self) -> tuple:
|
||
return self.model, self.model_base
|
||
|
||
def get_train_model(self) -> Model:
|
||
return self.model
|
||
|
||
def get_eval_model(self) -> Model:
|
||
return self.model_base
|
||
|
||
def summary(self) -> None:
|
||
self.model.summary()
|
||
|
||
def get_model_name(self) -> str:
|
||
return self._model_name
|
||
|
||
def load_weights(self, filename :str) -> None:
|
||
self.model.load_weights(filename)
|
||
|
||
def save_weights(self, filename :str) -> None:
|
||
self.model.save_weights(filename + '.model.h5')
|
||
self.model_base.save_weights(filename + '.model.base.h5')
|
||
|
||
f = open('epoch_'+self._model_name+'.txt','w')
|
||
f.write(filename)
|
||
f.close()
|
||
|
||
def get_loss_function(self):
|
||
raise Exception("method not implemented")
|
||
|
||
def forward(self, x):
|
||
raise Exception("method not implemented")
|
||
|
||
def ctc_lambda_func(args):
|
||
y_pred, labels, input_length, label_length = args
|
||
y_pred = y_pred[:, :, :]
|
||
return K.ctc_batch_cost(labels, y_pred, input_length, label_length)
|
||
|
||
class SpeechModel251(BaseModel):
|
||
'''
|
||
定义CNN+CTC模型,使用函数式模型
|
||
|
||
输入层:200维的特征值序列,一条语音数据的最大长度设为1600(大约16s)\\
|
||
隐藏层:卷积池化层,卷积核大小为3x3,池化窗口大小为2 \\
|
||
隐藏层:全连接层 \\
|
||
输出层:全连接层,神经元数量为self.MS_OUTPUT_SIZE,使用softmax作为激活函数, \\
|
||
CTC层:使用CTC的loss作为损失函数,实现连接性时序多输出
|
||
|
||
参数: \\
|
||
input_shape: tuple,默认值(1600, 200, 1) \\
|
||
output_shape: tuple,默认值(200, 1428)
|
||
'''
|
||
def __init__(self, input_shape :tuple=(1600, 200, 1), output_size :int=1428) -> None:
|
||
super().__init__()
|
||
self.input_shape = input_shape
|
||
self._pool_size = 8
|
||
self.output_shape = (input_shape[0] // self._pool_size, output_size)
|
||
self._model_name = 'SpeechModel251'
|
||
self.model, self.model_base = self._define_model(self.input_shape, self.output_shape[1])
|
||
|
||
def _define_model(self, input_shape, output_size) -> tuple:
|
||
label_max_string_length = 64
|
||
|
||
input_data = Input(name='the_input', shape=input_shape)
|
||
|
||
layer_h1 = Conv2D(32, (3,3), use_bias=False, activation='relu', padding='same', kernel_initializer='he_normal')(input_data) # 卷积层
|
||
layer_h1 = Dropout(0.05)(layer_h1)
|
||
layer_h2 = Conv2D(32, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h1) # 卷积层
|
||
layer_h3 = MaxPooling2D(pool_size=2, strides=None, padding="valid")(layer_h2) # 池化层
|
||
#layer_h3 = Dropout(0.2)(layer_h2) # 随机中断部分神经网络连接,防止过拟合
|
||
layer_h3 = Dropout(0.05)(layer_h3)
|
||
layer_h4 = Conv2D(64, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h3) # 卷积层
|
||
layer_h4 = Dropout(0.1)(layer_h4)
|
||
layer_h5 = Conv2D(64, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h4) # 卷积层
|
||
layer_h6 = MaxPooling2D(pool_size=2, strides=None, padding="valid")(layer_h5) # 池化层
|
||
|
||
layer_h6 = Dropout(0.1)(layer_h6)
|
||
layer_h7 = Conv2D(128, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h6) # 卷积层
|
||
layer_h7 = Dropout(0.15)(layer_h7)
|
||
layer_h8 = Conv2D(128, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h7) # 卷积层
|
||
layer_h9 = MaxPooling2D(pool_size=2, strides=None, padding="valid")(layer_h8) # 池化层
|
||
|
||
layer_h9 = Dropout(0.15)(layer_h9)
|
||
layer_h10 = Conv2D(128, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h9) # 卷积层
|
||
layer_h10 = Dropout(0.2)(layer_h10)
|
||
layer_h11 = Conv2D(128, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h10) # 卷积层
|
||
layer_h12 = MaxPooling2D(pool_size=1, strides=None, padding="valid")(layer_h11) # 池化层
|
||
|
||
layer_h12 = Dropout(0.2)(layer_h12)
|
||
layer_h13 = Conv2D(128, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h12) # 卷积层
|
||
layer_h13 = Dropout(0.2)(layer_h13)
|
||
layer_h14 = Conv2D(128, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h13) # 卷积层
|
||
layer_h15 = MaxPooling2D(pool_size=1, strides=None, padding="valid")(layer_h14) # 池化层
|
||
|
||
#test=Model(inputs = input_data, outputs = layer_h12)
|
||
#test.summary()
|
||
|
||
layer_h16 = Reshape((self.output_shape[0], 3200))(layer_h15) #Reshape层
|
||
#layer_h6 = Dropout(0.2)(layer_h5) # 随机中断部分神经网络连接,防止过拟合
|
||
layer_h16 = Dropout(0.3)(layer_h16)
|
||
layer_h17 = Dense(128, activation="relu", use_bias=True, kernel_initializer='he_normal')(layer_h16) # 全连接层
|
||
layer_h17 = Dropout(0.3)(layer_h17)
|
||
layer_h18 = Dense(output_size, use_bias=True, kernel_initializer='he_normal')(layer_h17) # 全连接层
|
||
y_pred = Activation('softmax', name='Activation0')(layer_h18)
|
||
|
||
model_base = Model(inputs = input_data, outputs = y_pred)
|
||
#model_data.summary()
|
||
|
||
labels = Input(name='the_labels', shape=[label_max_string_length], dtype='float32')
|
||
input_length = Input(name='input_length', shape=[1], dtype='int64')
|
||
label_length = Input(name='label_length', shape=[1], dtype='int64')
|
||
# Keras doesn't currently support loss funcs with extra parameters
|
||
# so CTC loss is implemented in a lambda layer
|
||
loss_out = Lambda(ctc_lambda_func, output_shape=(1,), name='ctc')([y_pred, labels, input_length, label_length])
|
||
|
||
model = Model(inputs=[input_data, labels, input_length, label_length], outputs=loss_out)
|
||
|
||
return model, model_base
|
||
|
||
def get_loss_function(self) -> dict:
|
||
return {'ctc': lambda y_true, y_pred: y_pred}
|
||
|
||
def forward(self, data_input):
|
||
batch_size = 1
|
||
in_len = np.zeros((batch_size),dtype = np.int32)
|
||
|
||
in_len[0] = self.output_shape[0]
|
||
|
||
x_in = np.zeros((batch_size,) + self.input_shape, dtype=np.float)
|
||
|
||
for i in range(batch_size):
|
||
x_in[i,0:len(data_input)] = data_input
|
||
|
||
base_pred = self.model_base.predict(x = x_in)
|
||
r = K.ctc_decode(base_pred, in_len, greedy = True, beam_width=100, top_paths=1)
|
||
|
||
if(tf.__version__[0:2] == '1.'):
|
||
r1 = r[0][0].eval(session=tf.compat.v1.Session())
|
||
else:
|
||
r1 = r[0][0].numpy()
|
||
|
||
p = 0
|
||
while p < len(r1[0])-1 and r1[0][p] != -1:
|
||
p += 1
|
||
return r1[0][0:p]
|
||
|
||
class SpeechModel25(BaseModel):
|
||
'''
|
||
定义CNN+CTC模型,使用函数式模型
|
||
|
||
输入层:200维的特征值序列,一条语音数据的最大长度设为1600(大约16s)\\
|
||
隐藏层:卷积池化层,卷积核大小为3x3,池化窗口大小为2 \\
|
||
隐藏层:全连接层 \\
|
||
输出层:全连接层,神经元数量为self.MS_OUTPUT_SIZE,使用softmax作为激活函数, \\
|
||
CTC层:使用CTC的loss作为损失函数,实现连接性时序多输出
|
||
|
||
参数: \\
|
||
input_shape: tuple,默认值(1600, 200, 1) \\
|
||
output_shape: tuple,默认值(200, 1428)
|
||
'''
|
||
def __init__(self, input_shape :tuple=(1600, 200, 1), output_size :int=1428) -> None:
|
||
super().__init__()
|
||
self.input_shape = input_shape
|
||
self._pool_size = 8
|
||
self.output_shape = (input_shape[0] // self._pool_size, output_size)
|
||
self._model_name = 'SpeechModel25'
|
||
self.model, self.model_base = self._define_model(self.input_shape, self.output_shape[1])
|
||
|
||
def _define_model(self, input_shape, output_size) -> tuple:
|
||
label_max_string_length = 64
|
||
|
||
input_data = Input(name='the_input', shape=input_shape)
|
||
|
||
layer_h1 = Conv2D(32, (3,3), use_bias=False, activation='relu', padding='same', kernel_initializer='he_normal')(input_data) # 卷积层
|
||
layer_h1 = Dropout(0.05)(layer_h1)
|
||
layer_h2 = Conv2D(32, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h1) # 卷积层
|
||
layer_h3 = MaxPooling2D(pool_size=2, strides=None, padding="valid")(layer_h2) # 池化层
|
||
#layer_h3 = Dropout(0.2)(layer_h2) # 随机中断部分神经网络连接,防止过拟合
|
||
layer_h3 = Dropout(0.05)(layer_h3)
|
||
layer_h4 = Conv2D(64, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h3) # 卷积层
|
||
layer_h4 = Dropout(0.1)(layer_h4)
|
||
layer_h5 = Conv2D(64, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h4) # 卷积层
|
||
layer_h6 = MaxPooling2D(pool_size=2, strides=None, padding="valid")(layer_h5) # 池化层
|
||
|
||
layer_h6 = Dropout(0.1)(layer_h6)
|
||
layer_h7 = Conv2D(128, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h6) # 卷积层
|
||
layer_h7 = Dropout(0.15)(layer_h7)
|
||
layer_h8 = Conv2D(128, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h7) # 卷积层
|
||
layer_h9 = MaxPooling2D(pool_size=2, strides=None, padding="valid")(layer_h8) # 池化层
|
||
|
||
layer_h9 = Dropout(0.15)(layer_h9)
|
||
layer_h10 = Conv2D(128, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h9) # 卷积层
|
||
layer_h10 = Dropout(0.2)(layer_h10)
|
||
layer_h11 = Conv2D(128, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h10) # 卷积层
|
||
layer_h12 = MaxPooling2D(pool_size=1, strides=None, padding="valid")(layer_h11) # 池化层
|
||
|
||
#test=Model(inputs = input_data, outputs = layer_h12)
|
||
#test.summary()
|
||
|
||
layer_h12 = Reshape((self.output_shape[0], 3200))(layer_h12) #Reshape层
|
||
#layer_h6 = Dropout(0.2)(layer_h5) # 随机中断部分神经网络连接,防止过拟合
|
||
layer_h12 = Dropout(0.3)(layer_h12)
|
||
layer_h13 = Dense(128, activation="relu", use_bias=True, kernel_initializer='he_normal')(layer_h12) # 全连接层
|
||
layer_h13 = Dropout(0.3)(layer_h13)
|
||
layer_h14 = Dense(output_size, use_bias=True, kernel_initializer='he_normal')(layer_h13) # 全连接层
|
||
y_pred = Activation('softmax', name='Activation0')(layer_h14)
|
||
|
||
model_base = Model(inputs = input_data, outputs = y_pred)
|
||
#model_data.summary()
|
||
|
||
labels = Input(name='the_labels', shape=[label_max_string_length], dtype='float32')
|
||
input_length = Input(name='input_length', shape=[1], dtype='int64')
|
||
label_length = Input(name='label_length', shape=[1], dtype='int64')
|
||
# Keras doesn't currently support loss funcs with extra parameters
|
||
# so CTC loss is implemented in a lambda layer
|
||
loss_out = Lambda(ctc_lambda_func, output_shape=(1,), name='ctc')([y_pred, labels, input_length, label_length])
|
||
|
||
model = Model(inputs=[input_data, labels, input_length, label_length], outputs=loss_out)
|
||
|
||
return model, model_base
|
||
|
||
def get_loss_function(self) -> dict:
|
||
return {'ctc': lambda y_true, y_pred: y_pred}
|
||
|
||
def forward(self, data_input):
|
||
batch_size = 1
|
||
in_len = np.zeros((batch_size),dtype = np.int32)
|
||
|
||
in_len[0] = self.output_shape[0]
|
||
|
||
x_in = np.zeros((batch_size,) + self.input_shape, dtype=np.float)
|
||
|
||
for i in range(batch_size):
|
||
x_in[i,0:len(data_input)] = data_input
|
||
|
||
base_pred = self.model_base.predict(x = x_in)
|
||
r = K.ctc_decode(base_pred, in_len, greedy = True, beam_width=100, top_paths=1)
|
||
|
||
if(tf.__version__[0:2] == '1.'):
|
||
r1 = r[0][0].eval(session=tf.compat.v1.Session())
|
||
else:
|
||
r1 = r[0][0].numpy()
|
||
|
||
p = 0
|
||
while p < len(r1[0])-1 and r1[0][p] != -1:
|
||
p += 1
|
||
return r1[0][0:p]
|
||
|
||
class SpeechModel24(BaseModel):
|
||
'''
|
||
定义CNN+CTC模型,使用函数式模型
|
||
|
||
输入层:200维的特征值序列,一条语音数据的最大长度设为1600(大约16s)\\
|
||
隐藏层:卷积池化层,卷积核大小为3x3,池化窗口大小为2 \\
|
||
隐藏层:全连接层 \\
|
||
输出层:全连接层,神经元数量为self.MS_OUTPUT_SIZE,使用softmax作为激活函数, \\
|
||
CTC层:使用CTC的loss作为损失函数,实现连接性时序多输出
|
||
|
||
参数: \\
|
||
input_shape: tuple,默认值(1600, 200, 1) \\
|
||
output_shape: tuple,默认值(200, 1428)
|
||
'''
|
||
def __init__(self, input_shape :tuple=(1600, 200, 1), output_size :int=1428) -> None:
|
||
super().__init__()
|
||
self.input_shape = input_shape
|
||
self._pool_size = 8
|
||
self.output_shape = (input_shape[0] // self._pool_size, output_size)
|
||
self._model_name = 'SpeechModel24'
|
||
self.model, self.model_base = self._define_model(self.input_shape, self.output_shape[1])
|
||
|
||
def _define_model(self, input_shape, output_size) -> tuple:
|
||
label_max_string_length = 64
|
||
|
||
input_data = Input(name='the_input', shape=input_shape)
|
||
|
||
layer_h1 = Conv2D(32, (3,3), use_bias=False, activation='relu', padding='same', kernel_initializer='he_normal')(input_data) # 卷积层
|
||
layer_h1 = Dropout(0.1)(layer_h1)
|
||
layer_h2 = Conv2D(32, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h1) # 卷积层
|
||
layer_h3 = MaxPooling2D(pool_size=2, strides=None, padding="valid")(layer_h2) # 池化层
|
||
#layer_h3 = Dropout(0.2)(layer_h2) # 随机中断部分神经网络连接,防止过拟合
|
||
layer_h3 = Dropout(0.2)(layer_h3)
|
||
layer_h4 = Conv2D(64, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h3) # 卷积层
|
||
layer_h4 = Dropout(0.2)(layer_h4)
|
||
layer_h5 = Conv2D(64, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h4) # 卷积层
|
||
layer_h6 = MaxPooling2D(pool_size=2, strides=None, padding="valid")(layer_h5) # 池化层
|
||
|
||
layer_h6 = Dropout(0.3)(layer_h6)
|
||
layer_h7 = Conv2D(128, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h6) # 卷积层
|
||
layer_h7 = Dropout(0.3)(layer_h7)
|
||
layer_h8 = Conv2D(128, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h7) # 卷积层
|
||
layer_h9 = MaxPooling2D(pool_size=2, strides=None, padding="valid")(layer_h8) # 池化层
|
||
|
||
#test=Model(inputs = input_data, outputs = layer_h12)
|
||
#test.summary()
|
||
|
||
layer_h10 = Reshape((self.output_shape[0], 3200))(layer_h9) #Reshape层
|
||
#layer_h6 = Dropout(0.2)(layer_h5) # 随机中断部分神经网络连接,防止过拟合
|
||
layer_h10 = Dropout(0.3)(layer_h10)
|
||
layer_h11 = Dense(128, activation="relu", use_bias=True, kernel_initializer='he_normal')(layer_h10) # 全连接层
|
||
layer_h11 = Dropout(0.3)(layer_h11)
|
||
layer_h12 = Dense(output_size, use_bias=True, kernel_initializer='he_normal')(layer_h11) # 全连接层
|
||
y_pred = Activation('softmax', name='Activation0')(layer_h12)
|
||
|
||
model_base = Model(inputs = input_data, outputs = y_pred)
|
||
#model_data.summary()
|
||
|
||
labels = Input(name='the_labels', shape=[label_max_string_length], dtype='float32')
|
||
input_length = Input(name='input_length', shape=[1], dtype='int64')
|
||
label_length = Input(name='label_length', shape=[1], dtype='int64')
|
||
# Keras doesn't currently support loss funcs with extra parameters
|
||
# so CTC loss is implemented in a lambda layer
|
||
loss_out = Lambda(ctc_lambda_func, output_shape=(1,), name='ctc')([y_pred, labels, input_length, label_length])
|
||
|
||
model = Model(inputs=[input_data, labels, input_length, label_length], outputs=loss_out)
|
||
|
||
return model, model_base
|
||
|
||
def get_loss_function(self) -> dict:
|
||
return {'ctc': lambda y_true, y_pred: y_pred}
|
||
|
||
def forward(self, data_input):
|
||
batch_size = 1
|
||
in_len = np.zeros((batch_size),dtype = np.int32)
|
||
|
||
in_len[0] = self.output_shape[0]
|
||
|
||
x_in = np.zeros((batch_size,) + self.input_shape, dtype=np.float)
|
||
|
||
for i in range(batch_size):
|
||
x_in[i,0:len(data_input)] = data_input
|
||
|
||
base_pred = self.model_base.predict(x = x_in)
|
||
r = K.ctc_decode(base_pred, in_len, greedy = True, beam_width=100, top_paths=1)
|
||
|
||
if(tf.__version__[0:2] == '1.'):
|
||
r1 = r[0][0].eval(session=tf.compat.v1.Session())
|
||
else:
|
||
r1 = r[0][0].numpy()
|
||
|
||
p = 0
|
||
while p < len(r1[0])-1 and r1[0][p] != -1:
|
||
p += 1
|
||
return r1[0][0:p]
|