397 lines
14 KiB
Python
397 lines
14 KiB
Python
#!/usr/bin/env python3
|
||
# -*- coding: utf-8 -*-
|
||
"""
|
||
@author: nl8590687
|
||
"""
|
||
import platform as plat
|
||
import os
|
||
|
||
from general_function.file_wav import *
|
||
import numpy as np
|
||
|
||
# LSTM_CNN
|
||
import keras as kr
|
||
import tensorflow as tf
|
||
import numpy as np
|
||
|
||
from keras.models import Sequential, Model
|
||
from keras.layers import Dense, Dropout, Input # , Flatten,LSTM,Convolution1D,MaxPooling1D,Merge
|
||
from keras.layers import Conv1D,LSTM,MaxPooling1D, Lambda, TimeDistributed, Activation #, Merge, Conv2D, MaxPooling2D,Conv1D
|
||
from keras.layers.normalization import BatchNormalization
|
||
|
||
from keras.layers.advanced_activations import LeakyReLU
|
||
|
||
from keras import backend as K
|
||
from keras.optimizers import SGD, Adadelta
|
||
|
||
from readdata3 import DataSpeech
|
||
from neural_network.ctc_layer import ctc_layer
|
||
from neural_network.ctc_loss import ctc_batch_loss
|
||
|
||
#from keras.backend.tensorflow_backend import ctc_batch_cost
|
||
|
||
class ModelSpeech(): # 语音模型类
|
||
def __init__(self, datapath):
|
||
'''
|
||
初始化
|
||
默认输出的拼音的表示大小是1283,即1282个拼音+1个空白块
|
||
'''
|
||
MS_OUTPUT_SIZE = 1417
|
||
self.MS_OUTPUT_SIZE = MS_OUTPUT_SIZE # 神经网络最终输出的每一个字符向量维度的大小
|
||
#self.BATCH_SIZE = BATCH_SIZE # 一次训练的batch
|
||
self.label_max_string_length = 64
|
||
self.AUDIO_LENGTH = 1600
|
||
self.AUDIO_FEATURE_LENGTH = 200
|
||
self._model = self.CreateModel()
|
||
|
||
self.data = DataSpeech(datapath)
|
||
|
||
def CreateModel(self):
|
||
'''
|
||
定义CNN/LSTM/CTC模型,使用函数式模型
|
||
输入层:39维的特征值序列,一条语音数据的最大长度设为1500(大约15s)
|
||
隐藏层一:1024个神经元的卷积层
|
||
隐藏层二:池化层,池化窗口大小为2
|
||
隐藏层三:Dropout层,需要断开的神经元的比例为0.2,防止过拟合
|
||
隐藏层四:循环层、LSTM层
|
||
隐藏层五:Dropout层,需要断开的神经元的比例为0.2,防止过拟合
|
||
隐藏层六:全连接层,神经元数量为self.MS_OUTPUT_SIZE,使用softmax作为激活函数,
|
||
输出层:自定义层,即CTC层,使用CTC的loss作为损失函数
|
||
|
||
当前未完成,网络模型可能还需要修改
|
||
'''
|
||
# 每一帧使用13维mfcc特征及其13维一阶差分和13维二阶差分表示,最大信号序列长度为1500
|
||
input_data = Input(name='the_input', shape=(self.AUDIO_LENGTH, self.AUDIO_FEATURE_LENGTH))
|
||
|
||
layer_h1_c = Conv1D(filters=256, kernel_size=5, strides=1, use_bias=True, padding="valid")(input_data) # 卷积层
|
||
#layer_h1_a = Activation('relu', name='relu0')(layer_h1_c)
|
||
layer_h1_a = LeakyReLU(alpha=0.3)(layer_h1_c) # 高级激活层
|
||
layer_h1 = MaxPooling1D(pool_size=2, strides=None, padding="valid")(layer_h1_a) # 池化层
|
||
|
||
layer_h2 = BatchNormalization()(layer_h1)
|
||
|
||
layer_h3_c = Conv1D(filters=256, kernel_size=5, strides=1, use_bias=True, padding="valid")(layer_h2) # 卷积层
|
||
layer_h3_a = LeakyReLU(alpha=0.3)(layer_h3_c) # 高级激活层
|
||
#layer_h3_a = Activation('relu', name='relu1')(layer_h3_c)
|
||
layer_h3 = MaxPooling1D(pool_size=2, strides=None, padding="valid")(layer_h3_a) # 池化层
|
||
|
||
layer_h4 = Dropout(0.1)(layer_h3) # 随机中断部分神经网络连接,防止过拟合
|
||
|
||
layer_h5 = Dense(256, use_bias=True, activation="softmax")(layer_h4) # 全连接层
|
||
layer_h6 = Dense(256, use_bias=True, activation="softmax")(layer_h5) # 全连接层
|
||
#layer_h4 = Activation('softmax', name='softmax0')(layer_h4_d1)
|
||
|
||
layer_h7 = LSTM(256, activation='softmax', use_bias=True, return_sequences=True)(layer_h6) # LSTM层
|
||
layer_h8 = LSTM(256, activation='softmax', use_bias=True, return_sequences=True)(layer_h7) # LSTM层
|
||
layer_h9 = LSTM(256, activation='softmax', use_bias=True, return_sequences=True)(layer_h8) # LSTM层
|
||
layer_h10 = LSTM(256, activation='softmax', use_bias=True, return_sequences=True)(layer_h9) # LSTM层
|
||
#layer_h10 = Activation('softmax', name='softmax1')(layer_h9)
|
||
|
||
layer_h10_dropout = Dropout(0.1)(layer_h10) # 随机中断部分神经网络连接,防止过拟合
|
||
|
||
layer_h11 = Dense(512, use_bias=True, activation="softmax")(layer_h10_dropout) # 全连接层
|
||
layer_h12 = Dense(self.MS_OUTPUT_SIZE, use_bias=True, activation="softmax")(layer_h11) # 全连接层
|
||
#layer_h6 = Dense(1283, activation="softmax")(layer_h5) # 全连接层
|
||
|
||
y_pred = Activation('softmax', name='softmax2')(layer_h12)
|
||
model_data = Model(inputs = input_data, outputs = y_pred)
|
||
#model_data.summary()
|
||
|
||
|
||
#labels = Input(name='the_labels', shape=[60], dtype='float32')
|
||
|
||
#labels = Input(name='the_labels', shape=[self.label_max_string_length], dtype='float32')
|
||
input_length = Input(name='input_length', shape=[1], dtype='int64')
|
||
#label_length = Input(name='label_length', shape=[1], dtype='int64')
|
||
# Keras doesn't currently support loss funcs with extra parameters
|
||
# so CTC loss is implemented in a lambda layer
|
||
|
||
#layer_out = Lambda(ctc_lambda_func,output_shape=(self.MS_OUTPUT_SIZE, ), name='ctc')([y_pred, labels, input_length, label_length])#(layer_h6) # CTC
|
||
ctc_out = Lambda(self.ctc_lambda_func2, output_shape = (397, self.MS_OUTPUT_SIZE), name='ctc')([y_pred, input_length])
|
||
|
||
#y_out = Activation('softmax', name='softmax3')(loss_out)
|
||
model = Model(inputs=[input_data, input_length], outputs = ctc_out)
|
||
|
||
model.summary()
|
||
|
||
# clipnorm seems to speeds up convergence
|
||
#sgd = SGD(lr=0.0001, decay=1e-8, momentum=0.9, nesterov=True, clipnorm=5)
|
||
ada_d = Adadelta(lr = 0.001, rho = 0.95, epsilon = 1e-06)
|
||
|
||
#model.compile(loss={'ctc': lambda y_true, y_pred: y_pred}, optimizer = sgd, metrics=['accuracy'])
|
||
#model.compile(loss={'ctc': lambda y_true, y_pred: y_pred}, optimizer = ada_d, metrics=['accuracy'])
|
||
model.compile(loss={'ctc': lambda y_true, y_pred: self.ctc_lambda_func([y_true, y_pred])}, optimizer = ada_d, metrics=['accuracy'])
|
||
|
||
# captures output of softmax so we can decode the output during visualization
|
||
self.test_func = K.function([input_data], [y_pred])
|
||
|
||
print('[*提示] 创建模型成功,模型编译成功')
|
||
return model
|
||
|
||
def ctc_lambda_func(self, args):
|
||
#y_pred, labels, input_length, label_length = args
|
||
y_true, y_pred = args
|
||
#print(y_pred)
|
||
y_pred = y_pred[:, 2:, :]
|
||
#return K.ctc_decode(y_pred,self.MS_OUTPUT_SIZE)
|
||
return K.ctc_batch_cost(y_true, y_pred, y_true.shape[1], y_pred.shape[1])
|
||
|
||
def ctc_lambda_func2(self, args):
|
||
y_pred, input_length = args
|
||
print('**',y_pred,input_length,'**')
|
||
#y_pred = y_pred[:, :, 0:-1]
|
||
#y_pred = K.reverse(y_pred, axes=-1)
|
||
input_length = K.reshape(input_length, (-1,))
|
||
print(input_length)
|
||
#input_length = input_length.reshape(input_length.shape[0],input_length.shape[1])
|
||
#return K.ctc_decode(y_pred,self.MS_OUTPUT_SIZE)
|
||
#dict = []
|
||
#for i in range(0,self.MS_OUTPUT_SIZE + 1):
|
||
# dict.append(i)
|
||
#, input_length
|
||
|
||
top_k_decoded, _ = K.ctc_decode(y_pred, input_length , greedy=True, beam_width=64)
|
||
print(top_k_decoded, top_k_decoded[0].shape)
|
||
|
||
top_k_decoded = top_k_decoded[0]
|
||
#num=top_k_decoded.shape[0]
|
||
#num=len(top_k_decoded0.shape[0])
|
||
|
||
#with tf.Session():
|
||
#top_k_decoded = top_k_decoded.eval()
|
||
|
||
print(top_k_decoded)
|
||
print('num: ',num)
|
||
for j in range(num):
|
||
print(top_k_decoded)
|
||
|
||
tmp_decoded = top_k_decoded[j,0:-1]
|
||
|
||
max_arg = np.argmax(tmp_decoded, 1)
|
||
print(max_arg)
|
||
out_best = list(max_arg)
|
||
|
||
|
||
|
||
out_best = [k for k, g in itertools.groupby(out_best)]
|
||
#outstr = labels_to_text(out_best)
|
||
#ret.append(outstr)
|
||
ret.append(outbest)
|
||
|
||
ret = np.array(ret)
|
||
return ret
|
||
|
||
#def GetEditDistance(self, x0, x1):
|
||
|
||
|
||
def TrainModel(self, datapath, epoch = 2, batch_size = 32, save_step = 1000, filename = 'model_speech/speech_model'):
|
||
'''
|
||
训练模型
|
||
参数:
|
||
datapath: 数据保存的路径
|
||
epoch: 迭代轮数
|
||
save_step: 每多少步保存一次模型
|
||
filename: 默认保存文件名,不含文件后缀名
|
||
'''
|
||
#data=DataSpeech(datapath)
|
||
data = self.data
|
||
data.LoadDataList('train')
|
||
num_data = data.GetDataNum() # 获取数据的数量
|
||
for epoch in range(epoch): # 迭代轮数
|
||
print('[running] train epoch %d .' % epoch)
|
||
n_step = 0 # 迭代数据数
|
||
while (n_step * save_step < num_data):
|
||
try:
|
||
print('[message] epoch %d . Have train datas %d+'%(epoch, n_step*save_step))
|
||
# data_genetator是一个生成器函数
|
||
yielddatas = data.data_genetator(batch_size, self.AUDIO_LENGTH)
|
||
#self._model.fit_generator(yielddatas, save_step, nb_worker=2)
|
||
self._model.fit_generator(yielddatas, save_step)
|
||
n_step += 1
|
||
except StopIteration:
|
||
print('[error] generator error. please check data format.')
|
||
break
|
||
|
||
self.SaveModel(comment='_e_'+str(epoch)+'_step_'+str(n_step * save_step))
|
||
|
||
|
||
def LoadModel(self, filename = 'model_speech/speech_model_e_0_step_1.model'):
|
||
'''
|
||
加载模型参数
|
||
'''
|
||
self._model.load_weights(filename)
|
||
print('*[提示] 已加载模型')
|
||
|
||
def SaveModel(self, filename = 'model_speech/speech_model', comment = ''):
|
||
'''
|
||
保存模型参数
|
||
'''
|
||
self._model.save_weights(filename + comment + '.model')
|
||
|
||
def TestModel(self, datapath, str_dataset='dev', data_count = 32):
|
||
'''
|
||
测试检验模型效果
|
||
'''
|
||
#data=DataSpeech(datapath)
|
||
data = self.data
|
||
data.LoadDataList(str_dataset)
|
||
num_data = data.GetDataNum() # 获取数据的数量
|
||
if(data_count <= 0 or data_count > num_data): # 当data_count为小于等于0或者大于测试数据量的值时,则使用全部数据来测试
|
||
data_count = num_data
|
||
|
||
try:
|
||
gen = data.data_genetator(data_count)
|
||
#for i in range(1):
|
||
# [X, y, input_length, label_length ], labels = gen
|
||
#r = self._model.test_on_batch([X, y, input_length, label_length ], labels)
|
||
r = self._model.evaluate_generator(generator = gen, steps = 1, max_queue_size = data_count, workers = 1, use_multiprocessing = False)
|
||
print(r)
|
||
except StopIteration:
|
||
print('[Error] Model Test Error. please check data format.')
|
||
|
||
def Predict(self,x):
|
||
'''
|
||
预测结果
|
||
'''
|
||
r = self._model.predict_on_batch(x)
|
||
print(r)
|
||
return r
|
||
pass
|
||
|
||
def decode_batch(self, test_func, word_batch):
|
||
out = test_func([word_batch])[0]
|
||
ret = []
|
||
for j in range(out.shape[0]):
|
||
out_best = list(np.argmax(out[j, 2:], 1))
|
||
out_best = [k for k, g in itertools.groupby(out_best)]
|
||
outstr = labels_to_text(out_best)
|
||
ret.append(outstr)
|
||
return ret
|
||
|
||
def show_edit_distance(self, num):
|
||
num_left = num
|
||
mean_norm_ed = 0.0
|
||
mean_ed = 0.0
|
||
while num_left > 0:
|
||
word_batch = next(self.text_img_gen)[0]
|
||
num_proc = min(word_batch['the_input'].shape[0], num_left)
|
||
decoded_res = decode_batch(self.test_func, word_batch['the_input'][0:num_proc])
|
||
for j in range(num_proc):
|
||
edit_dist = editdistance.eval(decoded_res[j], word_batch['source_str'][j])
|
||
mean_ed += float(edit_dist)
|
||
mean_norm_ed += float(edit_dist) / len(word_batch['source_str'][j])
|
||
num_left -= num_proc
|
||
mean_norm_ed = mean_norm_ed / num
|
||
mean_ed = mean_ed / num
|
||
print('\nOut of %d samples: Mean edit distance: %.3f Mean normalized edit distance: %0.3f'
|
||
% (num, mean_ed, mean_norm_ed))
|
||
|
||
def RecognizeSpeech(self, wavsignal, fs):
|
||
'''
|
||
最终做语音识别用的函数,识别一个wav序列的语音
|
||
不过这里现在还有bug
|
||
'''
|
||
|
||
#data = self.data
|
||
data = DataSpeech('E:\\语音数据集')
|
||
data.LoadDataList('dev')
|
||
# 获取输入特征
|
||
#data_input = data.GetMfccFeature(wavsignal, fs)
|
||
data_input = data.GetFrequencyFeature(wavsignal, fs)
|
||
|
||
arr_zero = np.zeros((1, 200), dtype=np.int16) #一个全是0的行向量
|
||
|
||
#import matplotlib.pyplot as plt
|
||
#plt.subplot(111)
|
||
#plt.imshow(data_input, cmap=plt.get_cmap('gray'))
|
||
#plt.show()
|
||
|
||
#while(len(data_input)<1600): #长度不够时补全到1600
|
||
# data_input = np.row_stack((data_input,arr_zero))
|
||
#print(len(data_input))
|
||
|
||
list_symbol = data.list_symbol # 获取拼音列表
|
||
|
||
labels = [ list_symbol[0] ]
|
||
#while(len(labels) < 64):
|
||
# labels.append('')
|
||
|
||
labels_num = []
|
||
for i in labels:
|
||
labels_num.append(data.SymbolToNum(i))
|
||
|
||
|
||
|
||
data_input = np.array(data_input, dtype=np.int16)
|
||
data_input = data_input.reshape(data_input.shape[0],data_input.shape[1])
|
||
|
||
labels_num = np.array(labels_num, dtype=np.int16)
|
||
labels_num = labels_num.reshape(labels_num.shape[0])
|
||
|
||
input_length = np.array([data_input.shape[0] // 4 - 3], dtype=np.int16)
|
||
input_length = np.array(input_length)
|
||
input_length = input_length.reshape(input_length.shape[0])
|
||
|
||
label_length = np.array([labels_num.shape[0]], dtype=np.int16)
|
||
label_length = np.array(label_length)
|
||
label_length = label_length.reshape(label_length.shape[0])
|
||
|
||
x = [data_input, labels_num, input_length, label_length]
|
||
#x = next(data.data_genetator(1, self.AUDIO_LENGTH))
|
||
#x = kr.utils.np_utils.to_categorical(x)
|
||
|
||
print(x)
|
||
x=np.array(x)
|
||
|
||
pred = self._model.predict(x=x)
|
||
#pred = self._model.predict_on_batch([data_input, labels_num, input_length, label_length])
|
||
return [labels,pred]
|
||
|
||
pass
|
||
|
||
def RecognizeSpeech_FromFile(self, filename):
|
||
'''
|
||
最终做语音识别用的函数,识别指定文件名的语音
|
||
'''
|
||
|
||
wavsignal,fs = read_wav_data(filename)
|
||
return self.RecognizeSpeech(wavsignal, fs)
|
||
|
||
pass
|
||
|
||
@property
|
||
def model(self):
|
||
'''
|
||
返回keras model
|
||
'''
|
||
return self._model
|
||
|
||
|
||
if(__name__=='__main__'):
|
||
datapath = ''
|
||
modelpath = 'model_speech'
|
||
|
||
|
||
if(not os.path.exists(modelpath)): # 判断保存模型的目录是否存在
|
||
os.makedirs(modelpath) # 如果不存在,就新建一个,避免之后保存模型的时候炸掉
|
||
|
||
system_type = plat.system() # 由于不同的系统的文件路径表示不一样,需要进行判断
|
||
if(system_type == 'Windows'):
|
||
datapath = 'E:\\语音数据集'
|
||
modelpath = modelpath + '\\'
|
||
elif(system_type == 'Linux'):
|
||
datapath = 'dataset'
|
||
modelpath = modelpath + '/'
|
||
else:
|
||
print('*[Message] Unknown System\n')
|
||
datapath = 'dataset'
|
||
modelpath = modelpath + '/'
|
||
|
||
ms = ModelSpeech(datapath)
|
||
|
||
#ms.LoadModel(modelpath + 'speech_model_e_0_step_1.model')
|
||
ms.TrainModel(datapath, epoch = 2, batch_size = 8, save_step = 1)
|
||
#ms.TestModel(datapath, str_dataset='dev', data_count = 32)
|
||
#r = ms.RecognizeSpeech_FromFile('E:\\语音数据集\\wav\\test\\D4\\D4_750.wav')
|
||
#print('*[提示] 语音识别结果:\n',r)
|