ASRT_SpeechRecognition/asrserver_http.py

185 lines
6.6 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
#
# Copyright 2016-2099 Ailemon.net
#
# This file is part of ASRT Speech Recognition Tool.
#
# ASRT is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# ASRT is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with ASRT. If not, see <https://www.gnu.org/licenses/>.
# ============================================================================
"""
@author: nl8590687
ASRT语音识别基于HTTP协议的API服务器程序
"""
import argparse
import base64
import json
from flask import Flask, Response, request
from speech_model import ModelSpeech
from model_zoo.speech_model.keras_backend import SpeechModel251BN
from speech_features import Spectrogram
from language_model3 import ModelLanguage
from utils.ops import decode_wav_bytes
API_STATUS_CODE_OK = 200000 # OK
API_STATUS_CODE_CLIENT_ERROR = 400000
API_STATUS_CODE_CLIENT_ERROR_FORMAT = 400001 # 请求数据格式错误
API_STATUS_CODE_CLIENT_ERROR_CONFIG = 400002 # 请求数据配置不支持
API_STATUS_CODE_SERVER_ERROR = 500000
API_STATUS_CODE_SERVER_ERROR_RUNNING = 500001 # 服务器运行中出错
parser = argparse.ArgumentParser(description='ASRT HTTP+Json RESTful API Service')
parser.add_argument('--listen', default='0.0.0.0', type=str, help='the network to listen')
parser.add_argument('--port', default='20001', type=str, help='the port to listen')
args = parser.parse_args()
app = Flask("ASRT API Service")
AUDIO_LENGTH = 1600
AUDIO_FEATURE_LENGTH = 200
CHANNELS = 1
# 默认输出的拼音的表示大小是1428即1427个拼音+1个空白块
OUTPUT_SIZE = 1428
sm251bn = SpeechModel251BN(
input_shape=(AUDIO_LENGTH, AUDIO_FEATURE_LENGTH, CHANNELS),
output_size=OUTPUT_SIZE
)
feat = Spectrogram()
ms = ModelSpeech(sm251bn, feat, max_label_length=64)
ms.load_model('save_models/' + sm251bn.get_model_name() + '.model.h5')
ml = ModelLanguage('model_language')
ml.load_model()
class AsrtApiResponse:
'''
ASRT语音识别基于HTTP协议的API接口响应类
'''
def __init__(self, status_code, status_message='', result=''):
self.status_code = status_code
self.status_message = status_message
self.result = result
def to_json(self):
'''
类转json
'''
return json.dumps(self, default=lambda o: o.__dict__,
sort_keys=True)
# api接口根url:GET
@app.route('/', methods=["GET"])
def index_get():
'''
根路径handle GET方法
'''
buffer = ''
with open('assets/default.html', 'r', encoding='utf-8') as file_handle:
buffer = file_handle.read()
return Response(buffer, mimetype='text/html; charset=utf-8')
# api接口根url:POST
@app.route('/', methods=["POST"])
def index_post():
'''
根路径handle POST方法
'''
json_data = AsrtApiResponse(API_STATUS_CODE_OK, 'ok')
buffer = json_data.to_json()
return Response(buffer, mimetype='application/json')
# 获取分类列表
@app.route('/<level>', methods=["POST"])
def recognition_post(level):
'''
其他路径 POST方法
'''
#读取json文件内容
try:
if level == 'speech':
request_data = request.get_json()
samples = request_data['samples']
wavdata_bytes = base64.urlsafe_b64decode(bytes(samples,encoding='utf-8'))
sample_rate = request_data['sample_rate']
channels = request_data['channels']
byte_width = request_data['byte_width']
wavdata = decode_wav_bytes(samples_data=wavdata_bytes,
channels=channels, byte_width=byte_width)
result = ms.recognize_speech(wavdata, sample_rate)
json_data = AsrtApiResponse(API_STATUS_CODE_OK, 'speech level')
json_data.result = result
buffer = json_data.to_json()
print('output:', buffer)
return Response(buffer, mimetype='application/json')
elif level == 'language':
request_data = request.get_json()
seq_pinyin = request_data['sequence_pinyin']
result = ml.pinyin_to_text(seq_pinyin)
json_data = AsrtApiResponse(API_STATUS_CODE_OK, 'language level')
json_data.result = result
buffer = json_data.to_json()
print('output:', buffer)
return Response(buffer, mimetype='application/json')
elif level == 'all':
request_data = request.get_json()
samples = request_data['samples']
wavdata_bytes = base64.urlsafe_b64decode(samples)
sample_rate = request_data['sample_rate']
channels = request_data['channels']
byte_width = request_data['byte_width']
wavdata = decode_wav_bytes(samples_data=wavdata_bytes,
channels=channels, byte_width=byte_width)
result_speech = ms.recognize_speech(wavdata, sample_rate)
result = ml.pinyin_to_text(result_speech)
json_data = AsrtApiResponse(API_STATUS_CODE_OK, 'all level')
json_data.result = result
buffer = json_data.to_json()
print('ASRT Result:', result,'output:', buffer)
return Response(buffer, mimetype='application/json')
else:
request_data = request.get_json()
print('input:', request_data)
json_data = AsrtApiResponse(API_STATUS_CODE_CLIENT_ERROR, '')
buffer = json_data.to_json()
print('output:', buffer)
return Response(buffer, mimetype='application/json')
except Exception as except_general:
request_data = request.get_json()
#print(request_data['sample_rate'], request_data['channels'],
# request_data['byte_width'], len(request_data['samples']),
# request_data['samples'][-100:])
json_data = AsrtApiResponse(API_STATUS_CODE_SERVER_ERROR, str(except_general))
buffer = json_data.to_json()
#print("input:", request_data, "\n", "output:", buffer)
print("output:", buffer, "error:", except_general)
return Response(buffer, mimetype='application/json')
if __name__ == '__main__':
# for development env
#app.run(host='0.0.0.0', port=20001)
# for production env
import waitress
waitress.serve(app, host=args.listen, port=args.port)