ASRT_SpeechRecognition/SpeechModel.py

204 lines
7.3 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
@author: nl8590687
"""
# LSTM_CNN
import keras as kr
import numpy as np
from keras.models import Sequential, Model
from keras.layers import Dense, Dropout, Input # , Flatten,LSTM,Convolution1D,MaxPooling1D,Merge
from keras.layers import Conv1D,LSTM,MaxPooling1D, Lambda, TimeDistributed, Activation #, Merge, Conv2D, MaxPooling2D,Conv1D
from keras import backend as K
from keras.optimizers import SGD
from readdata import DataSpeech
from neural_network.ctc_layer import ctc_layer
from neural_network.ctc_loss import ctc_batch_loss
#from keras.backend.tensorflow_backend import ctc_batch_cost
class ModelSpeech(): # 语音模型类
def __init__(self,MS_OUTPUT_SIZE = 1417,BATCH_SIZE = 32):
'''
初始化
默认输出的拼音的表示大小是1283即1282个拼音+1个空白块
'''
self.MS_OUTPUT_SIZE = MS_OUTPUT_SIZE # 神经网络最终输出的每一个字符向量维度的大小
self.BATCH_SIZE = BATCH_SIZE # 一次训练的batch
self.label_max_string_length = 64
self.AUDIO_LENGTH = 1600
self.AUDIO_FEATURE_LENGTH = 39
self._model = self.CreateModel()
def CreateModel(self):
'''
定义CNN/LSTM/CTC模型使用函数式模型
输入层39维的特征值序列一条语音数据的最大长度设为1500大约15s
隐藏层一1024个神经元的卷积层
隐藏层二池化层池化窗口大小为2
隐藏层三Dropout层需要断开的神经元的比例为0.2,防止过拟合
隐藏层四循环层、LSTM层
隐藏层五Dropout层需要断开的神经元的比例为0.2,防止过拟合
隐藏层六全连接层神经元数量为self.MS_OUTPUT_SIZE使用softmax作为激活函数
输出层自定义层即CTC层使用CTC的loss作为损失函数实现连接性时序多输出
当前未完成针对多输出的CTC层尚未实现
'''
# 每一帧使用13维mfcc特征及其13维一阶差分和13维二阶差分表示最大信号序列长度为1500
input_data = Input(name='the_input', shape=(self.AUDIO_LENGTH,self.AUDIO_FEATURE_LENGTH))
layer_h1 = Conv1D(256, 5, use_bias=True, padding="valid")(input_data) # 卷积层
layer_h2 = MaxPooling1D(pool_size=2, strides=None, padding="valid")(layer_h1) # 池化层
layer_h3 = Dropout(0.2)(layer_h2) # 随机中断部分神经网络连接,防止过拟合
layer_h4 = LSTM(256, activation='relu', use_bias=True, return_sequences=True)(layer_h3) # LSTM层
layer_h5 = Dropout(0.2)(layer_h4) # 随机中断部分神经网络连接,防止过拟合
layer_h6 = Dense(self.MS_OUTPUT_SIZE, activation="relu")(layer_h5) # 全连接层
#layer_h6 = Dense(1283, activation="softmax")(layer_h5) # 全连接层
y_pred = Activation('softmax', name='softmax')(layer_h6)
model_data = Model(inputs = input_data, outputs = y_pred)
#model_data.summary()
#layer_out = ctc_layer(64, self.BATCH_SIZE)(layer_h6) # CTC层 可能有bug
#layer_out = ctc_layer(1283, 32)(layer_h6) # CTC层 可能有bug
#labels = Input(name='the_labels', shape=[60], dtype='float32')
labels = Input(name='the_labels', shape=[self.label_max_string_length], dtype='float32')
input_length = Input(name='input_length', shape=[1], dtype='int64')
label_length = Input(name='label_length', shape=[1], dtype='int64')
# Keras doesn't currently support loss funcs with extra parameters
# so CTC loss is implemented in a lambda layer
#layer_out = Lambda(ctc_lambda_func,output_shape=(self.MS_OUTPUT_SIZE, ), name='ctc')([y_pred, labels, input_length, label_length])#(layer_h6) # CTC
loss_out = Lambda(self.ctc_lambda_func, output_shape=(1,), name='ctc')([y_pred, labels, input_length, label_length])
# clipnorm seems to speeds up convergence
sgd = SGD(lr=0.002, decay=1e-6, momentum=0.9, nesterov=True, clipnorm=5)
model = Model(inputs=[input_data, labels, input_length, label_length], outputs=loss_out)
model.summary()
model.compile(loss={'ctc': lambda y_true, y_pred: y_pred}, optimizer=sgd)
#layer_out = TimeDistributed(Dense(self.MS_OUTPUT_SIZE, activation="softmax"))(layer_h5)
#_model = Model(inputs = layer_input, outputs = layer_out)
#_model.summary()
#_model = Sequential()
#_model.add(Conv1D(256, 5, use_bias=True, padding="valid", input_shape=(1500,39)))
#_model.add(MaxPooling1D(pool_size=2, strides=None, padding="valid"))
#_model.add(Dropout(0.2))
#_model.add(LSTM(256, activation='relu', use_bias=True, return_sequences=True))
#_model.add(Dropout(0.2))
#_model.add(TimeDistributed(Dense(self.MS_OUTPUT_SIZE)))
#_model.add(Activation("softmax"))
# captures output of softmax so we can decode the output during visualization
test_func = K.function([input_data], [y_pred])
#_model.compile(optimizer="sgd", loss='categorical_crossentropy',metrics=["accuracy"])
#_model.compile(optimizer = "sgd", loss = ctc_batch_loss, metrics = ["accuracy"])
print('[*提示] 创建模型成功,模型编译成功')
return model
def ctc_lambda_func(self, args):
y_pred, labels, input_length, label_length = args
#y_pred = args[:,2:,:]
#print('++++fuck+++++')
#print(y_pred)
y_pred = y_pred[:, 1:-2, :]
#return K.ctc_decode(y_pred,self.MS_OUTPUT_SIZE)
return K.ctc_batch_cost(labels, y_pred, input_length, label_length)
def TrainModel(self,datapath,epoch = 2,save_step=1000,filename='model_speech/LSTM_CNN_model'):
'''
训练模型
参数:
datapath: 数据保存的路径
epoch: 迭代轮数
save_step: 每多少步保存一次模型
filename: 默认保存文件名,不含文件后缀名
'''
data=DataSpeech(datapath)
data.LoadDataList('train')
num_data = data.GetDataNum() # 获取数据的数量
for epoch in range(epoch): # 迭代轮数
print('[running] train epoch %d .' % epoch)
n_step = 0 # 迭代数据数
while True:
try:
print('[message] epoch %d . Have train datas %d+'%(epoch, n_step*save_step))
# data_genetator是一个生成器函数
yielddatas = data.data_genetator(self.BATCH_SIZE, self.AUDIO_LENGTH)
#self._model.fit_generator(yielddatas, save_step, nb_worker=2)
self._model.fit_generator(yielddatas, save_step)
n_step += 1
except StopIteration:
print('[error] generator error. please check data format.')
break
self.SaveModel(comment='_e_'+str(epoch)+'_step_'+str(n_step))
def LoadModel(self,filename='model_speech/LSTM_CNN_model.model'):
'''
加载模型参数
'''
self._model.load_weights(filename)
def SaveModel(self,filename='model_speech/LSTM_CNN_model',comment=''):
'''
保存模型参数
'''
self._model.save_weights(filename+comment+'.model')
def TestModel(self, datapath, str_dataset='dev'):
'''
测试检验模型效果
'''
data=DataSpeech(datapath)
data.LoadDataList(str_dataset)
num_data = DataSpeech.GetDataNum() # 获取数据的数量
try:
gen = data.data_genetator(num_data)
for i in range(1):
X, y = gen
r = self._model.test_on_batch(X, y)
print(r)
except StopIteration:
print('[Error] Model Test Error. please check data format.')
def Predict(self,x):
'''
预测结果
'''
r = self._model.predict_on_batch(x)
print(r)
return r
pass
@property
def model(self):
'''
返回keras model
'''
return self._model
if(__name__=='__main__'):
datapath = 'E:\\语音数据集'
ms = ModelSpeech()
ms.TrainModel(datapath)
#ms.TestModel(datapath)