ASRT_SpeechRecognition/SpeechModel25.py

413 lines
15 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
@author: nl8590687
"""
import platform as plat
import os
import time
from general_function.file_wav import *
from general_function.file_dict import *
from general_function.gen_func import *
# LSTM_CNN
import keras as kr
import numpy as np
import random
from keras.models import Sequential, Model
from keras.layers import Dense, Dropout, Input, Reshape # , Flatten,LSTM,Convolution1D,MaxPooling1D,Merge
from keras.layers import Conv1D,LSTM,MaxPooling1D, Lambda, TimeDistributed, Activation,Conv2D, MaxPooling2D #, Merge,Conv1D
from keras import backend as K
from keras.optimizers import SGD, Adadelta
from readdata24 import DataSpeech
class ModelSpeech(): # 语音模型类
def __init__(self, datapath):
'''
初始化
默认输出的拼音的表示大小是1424即1423个拼音+1个空白块
'''
MS_OUTPUT_SIZE = 1424
self.MS_OUTPUT_SIZE = MS_OUTPUT_SIZE # 神经网络最终输出的每一个字符向量维度的大小
#self.BATCH_SIZE = BATCH_SIZE # 一次训练的batch
self.label_max_string_length = 64
self.AUDIO_LENGTH = 1600
self.AUDIO_FEATURE_LENGTH = 200
self._model, self.base_model = self.CreateModel()
self.datapath = datapath
self.slash = ''
system_type = plat.system() # 由于不同的系统的文件路径表示不一样,需要进行判断
if(system_type == 'Windows'):
self.slash='\\' # 反斜杠
elif(system_type == 'Linux'):
self.slash='/' # 正斜杠
else:
print('*[Message] Unknown System\n')
self.slash='/' # 正斜杠
if(self.slash != self.datapath[-1]): # 在目录路径末尾增加斜杠
self.datapath = self.datapath + self.slash
def CreateModel(self):
'''
定义CNN/LSTM/CTC模型使用函数式模型
输入层200维的特征值序列一条语音数据的最大长度设为1600大约16s
隐藏层3*3卷积层
隐藏层池化层池化窗口大小为2
隐藏层Dropout层需要断开的神经元的比例为0.2,防止过拟合
隐藏层:全连接层
目标输出层全连接层神经元数量为self.MS_OUTPUT_SIZE使用softmax作为激活函数
输出层自定义层即CTC层使用CTC的loss作为损失函数实现连接性时序多输出
'''
# 每一帧使用13维mfcc特征及其13维一阶差分和13维二阶差分表示最大信号序列长度为1500
input_data = Input(name='the_input', shape=(self.AUDIO_LENGTH, self.AUDIO_FEATURE_LENGTH, 1))
layer_h1 = Conv2D(32, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(input_data) # 卷积层
layer_h1 = Dropout(0.1)(layer_h1)
layer_h2 = Conv2D(32, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h1) # 卷积层
layer_h3 = MaxPooling2D(pool_size=2, strides=None, padding="valid")(layer_h2) # 池化层
#layer_h3 = Dropout(0.2)(layer_h2) # 随机中断部分神经网络连接,防止过拟合
layer_h3 = Dropout(0.1)(layer_h3)
layer_h4 = Conv2D(64, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h3) # 卷积层
layer_h4 = Dropout(0.2)(layer_h4)
layer_h5 = Conv2D(64, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h4) # 卷积层
layer_h6 = MaxPooling2D(pool_size=2, strides=None, padding="valid")(layer_h5) # 池化层
layer_h6 = Dropout(0.2)(layer_h6)
layer_h7 = Conv2D(128, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h6) # 卷积层
layer_h7 = Dropout(0.3)(layer_h7)
layer_h8 = Conv2D(128, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h7) # 卷积层
layer_h9 = MaxPooling2D(pool_size=2, strides=None, padding="valid")(layer_h8) # 池化层
layer_h9 = Dropout(0.3)(layer_h9)
layer_h10 = Conv2D(128, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h9) # 卷积层
layer_h10 = Dropout(0.4)(layer_h10)
layer_h11 = Conv2D(128, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h10) # 卷积层
layer_h12 = MaxPooling2D(pool_size=1, strides=None, padding="valid")(layer_h11) # 池化层
#test=Model(inputs = input_data, outputs = layer_h12)
#test.summary()
layer_h10 = Reshape((200, 3200))(layer_h12) #Reshape层
#layer_h5 = LSTM(256, activation='relu', use_bias=True, return_sequences=True)(layer_h4) # LSTM层
#layer_h6 = Dropout(0.2)(layer_h5) # 随机中断部分神经网络连接,防止过拟合
layer_h10 = Dropout(0.4)(layer_h10)
layer_h11 = Dense(128, activation="relu", use_bias=True, kernel_initializer='he_normal')(layer_h10) # 全连接层
layer_h11 = Dropout(0.5)(layer_h11)
layer_h12 = Dense(self.MS_OUTPUT_SIZE, use_bias=True, kernel_initializer='he_normal')(layer_h11) # 全连接层
y_pred = Activation('softmax', name='Activation0')(layer_h12)
model_data = Model(inputs = input_data, outputs = y_pred)
#model_data.summary()
labels = Input(name='the_labels', shape=[self.label_max_string_length], dtype='float32')
input_length = Input(name='input_length', shape=[1], dtype='int64')
label_length = Input(name='label_length', shape=[1], dtype='int64')
# Keras doesn't currently support loss funcs with extra parameters
# so CTC loss is implemented in a lambda layer
#layer_out = Lambda(ctc_lambda_func,output_shape=(self.MS_OUTPUT_SIZE, ), name='ctc')([y_pred, labels, input_length, label_length])#(layer_h6) # CTC
loss_out = Lambda(self.ctc_lambda_func, output_shape=(1,), name='ctc')([y_pred, labels, input_length, label_length])
model = Model(inputs=[input_data, labels, input_length, label_length], outputs=loss_out)
#model.summary()
# clipnorm seems to speeds up convergence
#sgd = SGD(lr=0.0001, decay=1e-6, momentum=0.9, nesterov=True, clipnorm=5)
ada_d = Adadelta(lr = 0.01, rho = 0.95, epsilon = 1e-06)
#model.compile(loss={'ctc': lambda y_true, y_pred: y_pred}, optimizer=sgd)
model.compile(loss={'ctc': lambda y_true, y_pred: y_pred}, optimizer = ada_d)
# captures output of softmax so we can decode the output during visualization
test_func = K.function([input_data], [y_pred])
print('[*提示] 创建模型成功,模型编译成功')
return model, model_data
def ctc_lambda_func(self, args):
y_pred, labels, input_length, label_length = args
y_pred = y_pred[:, :, :]
#y_pred = y_pred[:, 2:, :]
return K.ctc_batch_cost(labels, y_pred, input_length, label_length)
def TrainModel(self, datapath, epoch = 2, save_step = 1000, batch_size = 32, filename = 'model_speech/speech_model25'):
'''
训练模型
参数:
datapath: 数据保存的路径
epoch: 迭代轮数
save_step: 每多少步保存一次模型
filename: 默认保存文件名,不含文件后缀名
'''
data=DataSpeech(datapath, 'train')
num_data = data.GetDataNum() # 获取数据的数量
yielddatas = data.data_genetator(batch_size, self.AUDIO_LENGTH)
for epoch in range(epoch): # 迭代轮数
print('[running] train epoch %d .' % epoch)
n_step = 0 # 迭代数据数
while True:
try:
print('[message] epoch %d . Have train datas %d+'%(epoch, n_step*save_step))
# data_genetator是一个生成器函数
#self._model.fit_generator(yielddatas, save_step, nb_worker=2)
self._model.fit_generator(yielddatas, save_step)
n_step += 1
except StopIteration:
print('[error] generator error. please check data format.')
break
self.SaveModel(comment='_e_'+str(epoch)+'_step_'+str(n_step * save_step))
self.TestModel(self.datapath, str_dataset='train', data_count = 4)
self.TestModel(self.datapath, str_dataset='dev', data_count = 4)
def LoadModel(self,filename='model_speech/speech_model25.model'):
'''
加载模型参数
'''
self._model.load_weights(filename)
self.base_model.load_weights(filename + '.base')
def SaveModel(self,filename='model_speech/speech_model25',comment=''):
'''
保存模型参数
'''
self._model.save_weights(filename+comment+'.model')
self.base_model.save_weights(filename + comment + '.model.base')
f = open('step25.txt','w')
f.write(filename+comment)
f.close()
def TestModel(self, datapath='', str_dataset='dev', data_count = 32, out_report = False, show_ratio = True):
'''
测试检验模型效果
'''
data=DataSpeech(self.datapath, str_dataset)
#data.LoadDataList(str_dataset)
num_data = data.GetDataNum() # 获取数据的数量
if(data_count <= 0 or data_count > num_data): # 当data_count为小于等于0或者大于测试数据量的值时则使用全部数据来测试
data_count = num_data
try:
ran_num = random.randint(0,num_data - 1) # 获取一个随机数
words_num = 0
word_error_num = 0
nowtime = time.strftime('%Y%m%d_%H%M%S',time.localtime(time.time()))
if(out_report == True):
txt_obj = open('Test_Report_' + str_dataset + '_' + nowtime + '.txt', 'w', encoding='UTF-8') # 打开文件并读入
txt = ''
for i in range(data_count):
data_input, data_labels = data.GetData((ran_num + i) % num_data) # 从随机数开始连续向后取一定数量数据
# 数据格式出错处理 开始
# 当输入的wav文件长度过长时自动跳过该文件转而使用下一个wav文件来运行
num_bias = 0
while(data_input.shape[0] > self.AUDIO_LENGTH):
print('*[Error]','wave data lenghth of num',(ran_num + i) % num_data, 'is too long.','\n A Exception raise when test Speech Model.')
num_bias += 1
data_input, data_labels = data.GetData((ran_num + i + num_bias) % num_data) # 从随机数开始连续向后取一定数量数据
# 数据格式出错处理 结束
pre = self.Predict(data_input, data_input.shape[0] // 8)
words_n = data_labels.shape[0] # 获取每个句子的字数
words_num += words_n # 把句子的总字数加上
edit_distance = GetEditDistance(data_labels, pre) # 获取编辑距离
if(edit_distance <= words_n): # 当编辑距离小于等于句子字数时
word_error_num += edit_distance # 使用编辑距离作为错误字数
else: # 否则肯定是增加了一堆乱七八糟的奇奇怪怪的字
word_error_num += words_n # 就直接加句子本来的总字数就好了
if(i % 10 == 0 and show_ratio == True):
print('测试进度:',i,'/',data_count)
txt = ''
if(out_report == True):
txt += str(i) + '\n'
txt += 'True:\t' + str(data_labels) + '\n'
txt += 'Pred:\t' + str(pre) + '\n'
txt += '\n'
txt_obj.write(txt)
print('*[测试结果] 语音识别 ' + str_dataset + ' 集语音单字错误率:', word_error_num / words_num * 100, '%')
if(out_report == True):
txt = '*[测试结果] 语音识别 ' + str_dataset + ' 集语音单字错误率: ' + str(word_error_num / words_num * 100) + ' %'
txt_obj.write(txt)
txt_obj.close()
except StopIteration:
print('[Error] Model Test Error. please check data format.')
def Predict(self, data_input, input_len):
'''
预测结果
返回语音识别后的拼音符号列表
'''
batch_size = 1
in_len = np.zeros((batch_size),dtype = np.int32)
in_len[0] = input_len
x_in = np.zeros((batch_size, 1600, self.AUDIO_FEATURE_LENGTH, 1), dtype=np.float)
for i in range(batch_size):
x_in[i,0:len(data_input)] = data_input
base_pred = self.base_model.predict(x = x_in)
#print('base_pred:\n', base_pred)
#y_p = base_pred
#for j in range(200):
# mean = np.sum(y_p[0][j]) / y_p[0][j].shape[0]
# print('max y_p:',np.max(y_p[0][j]),'min y_p:',np.min(y_p[0][j]),'mean y_p:',mean,'mid y_p:',y_p[0][j][100])
# print('argmin:',np.argmin(y_p[0][j]),'argmax:',np.argmax(y_p[0][j]))
# count=0
# for i in range(y_p[0][j].shape[0]):
# if(y_p[0][j][i] < mean):
# count += 1
# print('count:',count)
base_pred =base_pred[:, :, :]
#base_pred =base_pred[:, 2:, :]
r = K.ctc_decode(base_pred, in_len, greedy = True, beam_width=100, top_paths=1)
#print('r', r)
r1 = K.get_value(r[0][0])
#print('r1', r1)
#r2 = K.get_value(r[1])
#print(r2)
r1=r1[0]
return r1
pass
def RecognizeSpeech(self, wavsignal, fs):
'''
最终做语音识别用的函数识别一个wav序列的语音
不过这里现在还有bug
'''
#data = self.data
#data = DataSpeech('E:\\语音数据集')
#data.LoadDataList('dev')
# 获取输入特征
#data_input = GetMfccFeature(wavsignal, fs)
#t0=time.time()
data_input = GetFrequencyFeature3(wavsignal, fs)
#t1=time.time()
#print('time cost:',t1-t0)
input_length = len(data_input)
input_length = input_length // 8
data_input = np.array(data_input, dtype = np.float)
#print(data_input,data_input.shape)
data_input = data_input.reshape(data_input.shape[0],data_input.shape[1],1)
#t2=time.time()
r1 = self.Predict(data_input, input_length)
#t3=time.time()
#print('time cost:',t3-t2)
list_symbol_dic = GetSymbolList(self.datapath) # 获取拼音列表
r_str=[]
for i in r1:
r_str.append(list_symbol_dic[i])
return r_str
pass
def RecognizeSpeech_FromFile(self, filename):
'''
最终做语音识别用的函数,识别指定文件名的语音
'''
wavsignal,fs = read_wav_data(filename)
r = self.RecognizeSpeech(wavsignal, fs)
return r
pass
@property
def model(self):
'''
返回keras model
'''
return self._model
if(__name__=='__main__'):
import tensorflow as tf
from keras.backend.tensorflow_backend import set_session
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
#进行配置使用70%的GPU
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.93
#config.gpu_options.allow_growth=True #不全部占满显存, 按需分配
set_session(tf.Session(config=config))
datapath = ''
modelpath = 'model_speech'
if(not os.path.exists(modelpath)): # 判断保存模型的目录是否存在
os.makedirs(modelpath) # 如果不存在,就新建一个,避免之后保存模型的时候炸掉
system_type = plat.system() # 由于不同的系统的文件路径表示不一样,需要进行判断
if(system_type == 'Windows'):
datapath = 'E:\\语音数据集'
modelpath = modelpath + '\\'
elif(system_type == 'Linux'):
datapath = 'dataset'
modelpath = modelpath + '/'
else:
print('*[Message] Unknown System\n')
datapath = 'dataset'
modelpath = modelpath + '/'
ms = ModelSpeech(datapath)
#ms.LoadModel(modelpath + 'm25/speech_model25_e_0_step_545500.model')
ms.TrainModel(datapath, epoch = 50, batch_size = 16, save_step = 500)
#ms.TestModel(datapath, str_dataset='test', data_count = 128, out_report = True)
#r = ms.RecognizeSpeech_FromFile('E:\\语音数据集\\ST-CMDS-20170001_1-OS\\20170001P00241I0053.wav')
#r = ms.RecognizeSpeech_FromFile('E:\\语音数据集\\ST-CMDS-20170001_1-OS\\20170001P00020I0087.wav')
#r = ms.RecognizeSpeech_FromFile('E:\\语音数据集\\wav\\train\\A11\\A11_167.WAV')
#r = ms.RecognizeSpeech_FromFile('E:\\语音数据集\\wav\\test\\D4\\D4_750.wav')
#print('*[提示] 语音识别结果:\n',r)