ASRT_SpeechRecognition/general_function/sigproc.py

192 lines
6.4 KiB
Python

'''@file sigproc.py
contains the signal processing functionality
The MIT License (MIT)
Copyright (c) 2013 James Lyons
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
This file includes routines for basic signal processing including framing and
computing power spectra.
Author: James Lyons 2012
'''
import math
import numpy
def framesig(sig, frame_len, frame_step, winfunc=lambda x: numpy.ones((x, ))):
'''
Frame a signal into overlapping frames.
Args:
sig: the audio signal to frame.
frame_len: length of each frame measured in samples.
frame_step: number of samples after the start of the previous frame that
the next frame should begin.
winfunc: the analysis window to apply to each frame. By default no
window is applied.
Returns:
an array of frames. Size is NUMFRAMES by frame_len.
'''
slen = len(sig)
frame_len = int(round(frame_len))
frame_step = int(round(frame_step))
if slen <= frame_len:
numframes = 1
else:
numframes = 1 + int(math.ceil((1.0*slen - frame_len)/frame_step))
padlen = int((numframes-1)*frame_step + frame_len)
zeros = numpy.zeros((padlen - slen,))
padsignal = numpy.concatenate((sig, zeros))
indices = (numpy.tile(numpy.arange(0, frame_len), (numframes, 1))
+ numpy.tile(numpy.arange(0, numframes*frame_step, frame_step),
(frame_len, 1)).T)
indices = numpy.array(indices, dtype=numpy.int32)
frames = padsignal[indices]
win = numpy.tile(winfunc(frame_len), (numframes, 1))
return frames*win
def deframesig(frames, siglen, frame_len, frame_step,
winfunc=lambda x: numpy.ones((x, ))):
'''
Does overlap-add procedure to undo the action of framesig.
Args:
frames the: array of frames.
siglen the: length of the desired signal, use 0 if unknown. Output will
be truncated to siglen samples.
frame_len: length of each frame measured in samples.
frame_step: number of samples after the start of the previous frame that
the next frame should begin.
winfunc: the analysis window to apply to each frame. By default no
window is applied.
Returns:
a 1-D signal.
'''
frame_len = round(frame_len)
frame_step = round(frame_step)
numframes = numpy.shape(frames)[0]
assert numpy.shape(frames)[1] == frame_len, '''"frames" matrix is wrong
size, 2nd dim is not equal to frame_len'''
indices = (numpy.tile(numpy.arange(0, frame_len), (numframes, 1))
+ numpy.tile(numpy.arange(0, numframes*frame_step, frame_step),
(frame_len, 1)).T)
indices = numpy.array(indices, dtype=numpy.int32)
padlen = (numframes-1)*frame_step + frame_len
if siglen <= 0:
siglen = padlen
rec_signal = numpy.zeros((padlen, ))
window_correction = numpy.zeros((padlen, ))
win = winfunc(frame_len)
for i in range(0, numframes):
#add a little bit so it is never zero
window_correction[indices[i, :]] = (window_correction[indices[i, :]]
+ win + 1e-15)
rec_signal[indices[i, :]] = rec_signal[indices[i, :]] + frames[i, :]
rec_signal = rec_signal/window_correction
return rec_signal[0:siglen]
def magspec(frames, nfft):
'''
Compute the magnitude spectrum of each frame in frames.
If frames is an NxD matrix, output will be NxNFFT.
Args:
frames: the array of frames. Each row is a frame.
nfft: the FFT length to use. If NFFT > frame_len, the frames are
zero-padded.
Returns:
If frames is an NxD matrix, output will be NxNFFT. Each row will be the
magnitude spectrum of the corresponding frame.
'''
complex_spec = numpy.fft.rfft(frames, nfft)
return numpy.absolute(complex_spec)
def powspec(frames, nfft):
'''
Compute the power spectrum of each frame in frames.
If frames is an NxD matrix, output will be NxNFFT.
Args:
frames: the array of frames. Each row is a frame.
nfft: the FFT length to use. If NFFT > frame_len, the frames are
zero-padded.
Returns:
If frames is an NxD matrix, output will be NxNFFT. Each row will be the
power spectrum of the corresponding frame.
'''
return 1.0/nfft * numpy.square(magspec(frames, nfft))
def logpowspec(frames, nfft, norm=1):
'''
Compute the log power spectrum of each frame in frames.
If frames is an NxD matrix, output will be NxNFFT.
Args:
frames: the array of frames. Each row is a frame.
nfft: the FFT length to use. If NFFT > frame_len, the frames are
zero-padded.
norm: If norm=1, the log power spectrum is normalised so that the max
value (across all frames) is 1.
Returns:
If frames is an NxD matrix, output will be NxNFFT. Each row will be the
log power spectrum of the corresponding frame.
'''
ps = powspec(frames, nfft)
ps[ps <= 1e-30] = 1e-30
lps = 10*numpy.log10(ps)
if norm:
return lps - numpy.max(lps)
else:
return lps
def preemphasis(signal, coeff=0.95):
'''
perform preemphasis on the input signal.
Args:
signal: The signal to filter.
coeff: The preemphasis coefficient. 0 is no filter, default is 0.95.
Returns:
the filtered signal.
'''
return numpy.append(signal[0], signal[1:]-coeff*signal[:-1])