381 lines
13 KiB
Python
381 lines
13 KiB
Python
#!/usr/bin/env python3
|
||
# -*- coding: utf-8 -*-
|
||
"""
|
||
@author: nl8590687
|
||
"""
|
||
import platform as plat
|
||
import os
|
||
import time
|
||
|
||
from general_function.file_wav import *
|
||
from general_function.file_dict import *
|
||
from general_function.gen_func import *
|
||
|
||
# LSTM_CNN
|
||
import keras as kr
|
||
import numpy as np
|
||
import random
|
||
|
||
from keras.models import Sequential, Model
|
||
from keras.layers import Dense, Dropout, Input, Reshape # , Flatten,LSTM,Convolution1D,MaxPooling1D,Merge
|
||
from keras.layers import Conv1D,LSTM,MaxPooling1D, Lambda, TimeDistributed, Activation,Conv2D, MaxPooling2D #, Merge,Conv1D
|
||
from keras import backend as K
|
||
from keras.optimizers import SGD, Adadelta
|
||
|
||
from readdata23 import DataSpeech
|
||
#from neural_network.ctc_layer import ctc_layer
|
||
#from neural_network.ctc_loss import ctc_batch_loss
|
||
|
||
#from keras.backend.tensorflow_backend import ctc_batch_cost
|
||
|
||
class ModelSpeech(): # 语音模型类
|
||
def __init__(self, datapath):
|
||
'''
|
||
初始化
|
||
默认输出的拼音的表示大小是1283,即1282个拼音+1个空白块
|
||
'''
|
||
MS_OUTPUT_SIZE = 1417
|
||
self.MS_OUTPUT_SIZE = MS_OUTPUT_SIZE # 神经网络最终输出的每一个字符向量维度的大小
|
||
#self.BATCH_SIZE = BATCH_SIZE # 一次训练的batch
|
||
self.label_max_string_length = 64
|
||
self.AUDIO_LENGTH = 1600
|
||
self.AUDIO_FEATURE_LENGTH = 39
|
||
self._model, self.base_model = self.CreateModel()
|
||
|
||
self.datapath = datapath
|
||
self.slash = ''
|
||
system_type = plat.system() # 由于不同的系统的文件路径表示不一样,需要进行判断
|
||
if(system_type == 'Windows'):
|
||
self.slash='\\' # 反斜杠
|
||
elif(system_type == 'Linux'):
|
||
self.slash='/' # 正斜杠
|
||
else:
|
||
print('*[Message] Unknown System\n')
|
||
self.slash='/' # 正斜杠
|
||
if(self.slash != self.datapath[-1]): # 在目录路径末尾增加斜杠
|
||
self.datapath = self.datapath + self.slash
|
||
|
||
|
||
def CreateModel(self):
|
||
'''
|
||
定义CNN/LSTM/CTC模型,使用函数式模型
|
||
输入层:39维的特征值序列,一条语音数据的最大长度设为1500(大约15s)
|
||
隐藏层一:1024个神经元的卷积层
|
||
隐藏层二:池化层,池化窗口大小为2
|
||
隐藏层三:Dropout层,需要断开的神经元的比例为0.2,防止过拟合
|
||
隐藏层四:循环层、LSTM层
|
||
隐藏层五:Dropout层,需要断开的神经元的比例为0.2,防止过拟合
|
||
隐藏层六:全连接层,神经元数量为self.MS_OUTPUT_SIZE,使用softmax作为激活函数,
|
||
输出层:自定义层,即CTC层,使用CTC的loss作为损失函数,实现连接性时序多输出
|
||
|
||
'''
|
||
# 每一帧使用13维mfcc特征及其13维一阶差分和13维二阶差分表示,最大信号序列长度为1500
|
||
input_data = Input(name='the_input', shape=(self.AUDIO_LENGTH, self.AUDIO_FEATURE_LENGTH, 1))
|
||
|
||
layer_h1 = Conv2D(32, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(input_data) # 卷积层
|
||
layer_h2 = Conv2D(32, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h1) # 卷积层
|
||
layer_h3 = MaxPooling2D(pool_size=2, strides=None, padding="valid")(layer_h2) # 池化层
|
||
#layer_h3 = Dropout(0.2)(layer_h2) # 随机中断部分神经网络连接,防止过拟合
|
||
layer_h4 = Conv2D(64, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h3) # 卷积层
|
||
layer_h5 = Conv2D(64, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h4) # 卷积层
|
||
layer_h6 = MaxPooling2D(pool_size=2, strides=None, padding="valid")(layer_h5) # 池化层
|
||
|
||
#test=Model(inputs = input_data, outputs = layer_h6)
|
||
#test.summary()
|
||
|
||
layer_h7 = Reshape((400, 576))(layer_h6) #Reshape层
|
||
#layer_h5 = LSTM(256, activation='relu', use_bias=True, return_sequences=True)(layer_h4) # LSTM层
|
||
#layer_h6 = Dropout(0.2)(layer_h5) # 随机中断部分神经网络连接,防止过拟合
|
||
layer_h8 = Dense(128, activation="relu", use_bias=True, kernel_initializer='he_normal')(layer_h7) # 全连接层
|
||
layer_h9 = Dense(1417, use_bias=True, kernel_initializer='he_normal')(layer_h8) # 全连接层
|
||
|
||
y_pred = Activation('softmax', name='Activation0')(layer_h9)
|
||
model_data = Model(inputs = input_data, outputs = y_pred)
|
||
#model_data.summary()
|
||
|
||
|
||
#labels = Input(name='the_labels', shape=[60], dtype='float32')
|
||
|
||
labels = Input(name='the_labels', shape=[self.label_max_string_length], dtype='float32')
|
||
input_length = Input(name='input_length', shape=[1], dtype='int64')
|
||
label_length = Input(name='label_length', shape=[1], dtype='int64')
|
||
# Keras doesn't currently support loss funcs with extra parameters
|
||
# so CTC loss is implemented in a lambda layer
|
||
|
||
#layer_out = Lambda(ctc_lambda_func,output_shape=(self.MS_OUTPUT_SIZE, ), name='ctc')([y_pred, labels, input_length, label_length])#(layer_h6) # CTC
|
||
loss_out = Lambda(self.ctc_lambda_func, output_shape=(1,), name='ctc')([y_pred, labels, input_length, label_length])
|
||
|
||
|
||
|
||
model = Model(inputs=[input_data, labels, input_length, label_length], outputs=loss_out)
|
||
|
||
model.summary()
|
||
|
||
# clipnorm seems to speeds up convergence
|
||
#sgd = SGD(lr=0.0001, decay=1e-6, momentum=0.9, nesterov=True, clipnorm=5)
|
||
ada_d = Adadelta(lr = 0.01, rho = 0.95, epsilon = 1e-06)
|
||
|
||
#model.compile(loss={'ctc': lambda y_true, y_pred: y_pred}, optimizer=sgd, metrics=["accuracy"])
|
||
model.compile(loss={'ctc': lambda y_true, y_pred: y_pred}, optimizer = ada_d)
|
||
|
||
|
||
# captures output of softmax so we can decode the output during visualization
|
||
test_func = K.function([input_data], [y_pred])
|
||
|
||
print('[*提示] 创建模型成功,模型编译成功')
|
||
return model, model_data
|
||
|
||
def ctc_lambda_func(self, args):
|
||
y_pred, labels, input_length, label_length = args
|
||
|
||
y_pred = y_pred[:, :, :]
|
||
#y_pred = y_pred[:, 2:, :]
|
||
return K.ctc_batch_cost(labels, y_pred, input_length, label_length)
|
||
|
||
|
||
|
||
def TrainModel(self, datapath, epoch = 2, save_step = 1000, batch_size = 32, filename = 'model_speech/speech_model23'):
|
||
'''
|
||
训练模型
|
||
参数:
|
||
datapath: 数据保存的路径
|
||
epoch: 迭代轮数
|
||
save_step: 每多少步保存一次模型
|
||
filename: 默认保存文件名,不含文件后缀名
|
||
'''
|
||
data=DataSpeech(datapath, 'train')
|
||
#data.LoadDataList()
|
||
num_data = data.GetDataNum() # 获取数据的数量
|
||
|
||
yielddatas = data.data_genetator(batch_size, self.AUDIO_LENGTH)
|
||
|
||
for epoch in range(epoch): # 迭代轮数
|
||
print('[running] train epoch %d .' % epoch)
|
||
n_step = 0 # 迭代数据数
|
||
while True:
|
||
try:
|
||
print('[message] epoch %d . Have train datas %d+'%(epoch, n_step*save_step))
|
||
# data_genetator是一个生成器函数
|
||
|
||
#self._model.fit_generator(yielddatas, save_step, nb_worker=2)
|
||
self._model.fit_generator(yielddatas, save_step)
|
||
n_step += 1
|
||
except StopIteration:
|
||
print('[error] generator error. please check data format.')
|
||
break
|
||
|
||
self.SaveModel(comment='_e_'+str(epoch)+'_step_'+str(n_step * save_step))
|
||
self.TestModel(self.datapath, str_dataset='train', data_count = 4)
|
||
self.TestModel(self.datapath, str_dataset='dev', data_count = 4)
|
||
|
||
def LoadModel(self,filename='model_speech/speech_model23.model'):
|
||
'''
|
||
加载模型参数
|
||
'''
|
||
self._model.load_weights(filename)
|
||
self.base_model.load_weights(filename + '.base')
|
||
|
||
def SaveModel(self,filename='model_speech/speech_model23',comment=''):
|
||
'''
|
||
保存模型参数
|
||
'''
|
||
self._model.save_weights(filename+comment+'.model')
|
||
self.base_model.save_weights(filename + comment + '.model.base')
|
||
f = open('step23.txt','w')
|
||
f.write(filename+comment)
|
||
f.close()
|
||
|
||
def TestModel(self, datapath='', str_dataset='dev', data_count = 32, out_report = False):
|
||
'''
|
||
测试检验模型效果
|
||
'''
|
||
data=DataSpeech(self.datapath, str_dataset)
|
||
#data.LoadDataList(str_dataset)
|
||
num_data = data.GetDataNum() # 获取数据的数量
|
||
if(data_count <= 0 or data_count > num_data): # 当data_count为小于等于0或者大于测试数据量的值时,则使用全部数据来测试
|
||
data_count = num_data
|
||
|
||
try:
|
||
ran_num = random.randint(0,num_data - 1) # 获取一个随机数
|
||
|
||
words_num = 0
|
||
word_error_num = 0
|
||
|
||
nowtime = time.strftime('%Y%m%d_%H%M%S',time.localtime(time.time()))
|
||
if(out_report == True):
|
||
txt_obj = open('Test_Report_' + str_dataset + '_' + nowtime + '.txt', 'w', encoding='UTF-8') # 打开文件并读入
|
||
|
||
txt = ''
|
||
for i in range(data_count):
|
||
data_input, data_labels = data.GetData((ran_num + i) % num_data) # 从随机数开始连续向后取一定数量数据
|
||
pre = self.Predict(data_input, data_input.shape[0] // 4)
|
||
|
||
words_n = data_labels.shape[0] # 获取每个句子的字数
|
||
words_num += words_n # 把句子的总字数加上
|
||
edit_distance = GetEditDistance(data_labels, pre) # 获取编辑距离
|
||
if(edit_distance <= words_n): # 当编辑距离小于等于句子字数时
|
||
word_error_num += edit_distance # 使用编辑距离作为错误字数
|
||
else: # 否则肯定是增加了一堆乱七八糟的奇奇怪怪的字
|
||
word_error_num += words_n # 就直接加句子本来的总字数就好了
|
||
|
||
if(out_report == True):
|
||
txt += str(i) + '\n'
|
||
txt += 'True:\t' + str(data_labels) + '\n'
|
||
txt += 'Pred:\t' + str(pre) + '\n'
|
||
txt += '\n'
|
||
|
||
|
||
print('*[测试结果] 语音识别 ' + str_dataset + ' 集语音单字错误率:', word_error_num / words_num * 100, '%')
|
||
if(out_report == True):
|
||
txt += '*[测试结果] 语音识别 ' + str_dataset + ' 集语音单字错误率: ' + str(word_error_num / words_num * 100) + ' %'
|
||
txt_obj.write(txt)
|
||
txt_obj.close()
|
||
|
||
except StopIteration:
|
||
print('[Error] Model Test Error. please check data format.')
|
||
|
||
def Predict(self, data_input, input_len):
|
||
'''
|
||
预测结果
|
||
返回语音识别后的拼音符号列表
|
||
'''
|
||
batch_size = 1
|
||
in_len = np.zeros((batch_size),dtype = np.int32)
|
||
|
||
in_len[0] = input_len
|
||
|
||
|
||
|
||
x_in = np.zeros((batch_size, 1600, self.AUDIO_FEATURE_LENGTH, 1), dtype=np.float)
|
||
|
||
for i in range(batch_size):
|
||
x_in[i,0:len(data_input)] = data_input
|
||
|
||
base_pred = self.base_model.predict(x = x_in)
|
||
|
||
#print('base_pred:\n', base_pred)
|
||
|
||
#y_p = base_pred
|
||
#for j in range(200):
|
||
# mean = np.sum(y_p[0][j]) / y_p[0][j].shape[0]
|
||
# print('max y_p:',np.max(y_p[0][j]),'min y_p:',np.min(y_p[0][j]),'mean y_p:',mean,'mid y_p:',y_p[0][j][100])
|
||
# print('argmin:',np.argmin(y_p[0][j]),'argmax:',np.argmax(y_p[0][j]))
|
||
# count=0
|
||
# for i in range(y_p[0][j].shape[0]):
|
||
# if(y_p[0][j][i] < mean):
|
||
# count += 1
|
||
# print('count:',count)
|
||
|
||
base_pred =base_pred[:, :, :]
|
||
#base_pred =base_pred[:, 2:, :]
|
||
r = K.ctc_decode(base_pred, in_len, greedy = True, beam_width=100, top_paths=1)
|
||
#print('r', r)
|
||
|
||
|
||
r1 = K.get_value(r[0][0])
|
||
#print('r1', r1)
|
||
|
||
|
||
#r2 = K.get_value(r[1])
|
||
#print(r2)
|
||
|
||
r1=r1[0]
|
||
|
||
return r1
|
||
pass
|
||
|
||
def RecognizeSpeech(self, wavsignal, fs):
|
||
'''
|
||
最终做语音识别用的函数,识别一个wav序列的语音
|
||
不过这里现在还有bug
|
||
'''
|
||
|
||
#data = self.data
|
||
#data = DataSpeech('E:\\语音数据集')
|
||
#data.LoadDataList('dev')
|
||
# 获取输入特征
|
||
data_input = GetMfccFeature(wavsignal, fs)
|
||
#t0=time.time()
|
||
#data_input = GetFrequencyFeature(wavsignal, fs)
|
||
#t1=time.time()
|
||
#print('time cost:',t1-t0)
|
||
|
||
input_length = len(data_input)
|
||
input_length = input_length // 4
|
||
|
||
data_input = np.array(data_input, dtype = np.float)
|
||
#print(data_input,data_input.shape)
|
||
data_input = data_input.reshape(data_input.shape[0],data_input.shape[1],1)
|
||
|
||
r1 = self.Predict(data_input, input_length)
|
||
|
||
list_symbol_dic = GetSymbolList(self.datapath) # 获取拼音列表
|
||
|
||
|
||
r_str=[]
|
||
for i in r1:
|
||
r_str.append(list_symbol_dic[i])
|
||
|
||
return r_str
|
||
pass
|
||
|
||
def RecognizeSpeech_FromFile(self, filename):
|
||
'''
|
||
最终做语音识别用的函数,识别指定文件名的语音
|
||
'''
|
||
|
||
wavsignal,fs = read_wav_data(filename)
|
||
|
||
r = self.RecognizeSpeech(wavsignal, fs)
|
||
|
||
return r
|
||
|
||
pass
|
||
|
||
|
||
|
||
@property
|
||
def model(self):
|
||
'''
|
||
返回keras model
|
||
'''
|
||
return self._model
|
||
|
||
|
||
if(__name__=='__main__'):
|
||
|
||
import tensorflow as tf
|
||
from keras.backend.tensorflow_backend import set_session
|
||
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
|
||
config = tf.ConfigProto()
|
||
config.gpu_options.per_process_gpu_memory_fraction = 0.7
|
||
set_session(tf.Session(config=config))
|
||
|
||
|
||
datapath = ''
|
||
modelpath = 'model_speech'
|
||
|
||
|
||
if(not os.path.exists(modelpath)): # 判断保存模型的目录是否存在
|
||
os.makedirs(modelpath) # 如果不存在,就新建一个,避免之后保存模型的时候炸掉
|
||
|
||
system_type = plat.system() # 由于不同的系统的文件路径表示不一样,需要进行判断
|
||
if(system_type == 'Windows'):
|
||
datapath = 'E:\\语音数据集'
|
||
modelpath = modelpath + '\\'
|
||
elif(system_type == 'Linux'):
|
||
datapath = 'dataset'
|
||
modelpath = modelpath + '/'
|
||
else:
|
||
print('*[Message] Unknown System\n')
|
||
datapath = 'dataset'
|
||
modelpath = modelpath + '/'
|
||
|
||
ms = ModelSpeech(datapath)
|
||
|
||
ms.LoadModel(modelpath + 'm23\\speech_model23_e_0_step_7600.model')
|
||
#ms.TrainModel(datapath, epoch = 50, batch_size = 4, save_step = 500)
|
||
ms.TestModel(datapath, str_dataset='train', data_count = 64, out_report = True)
|
||
#r = ms.RecognizeSpeech_FromFile('E:\\语音数据集\\wav\\train\\A11\\A11_167.WAV')
|
||
#r = ms.RecognizeSpeech_FromFile('E:\\语音数据集\\wav\\test\\D4\\D4_750.wav')
|
||
#print('*[提示] 语音识别结果:\n',r) |