#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # Copyright 2016-2099 Ailemon.net # # This file is part of ASRT Speech Recognition Tool. # # ASRT is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # ASRT is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with ASRT. If not, see . # ============================================================================ """ @author: nl8590687 若干声学模型模型的定义 """ import tensorflow as tf from tensorflow.keras.models import Model from tensorflow.keras.layers import Dense, Dropout, Input, Reshape, BatchNormalization from tensorflow.keras.layers import Lambda, Activation,Conv2D, MaxPooling2D from tensorflow.keras import backend as K import numpy as np from utils.ops import ctc_decode_delete_tail_blank class BaseModel: ''' 定义声学模型类型的接口基类 ''' def __init__(self): self.input_shape = None self.output_shape = None def get_model(self) -> tuple: return self.model, self.model_base def get_train_model(self) -> Model: return self.model def get_eval_model(self) -> Model: return self.model_base def summary(self) -> None: self.model.summary() def get_model_name(self) -> str: return self._model_name def load_weights(self, filename :str) -> None: self.model.load_weights(filename) def save_weights(self, filename :str) -> None: self.model.save_weights(filename + '.model.h5') self.model_base.save_weights(filename + '.model.base.h5') f = open('epoch_'+self._model_name+'.txt','w') f.write(filename) f.close() def get_loss_function(self): raise Exception("method not implemented") def forward(self, x): raise Exception("method not implemented") def ctc_lambda_func(args): y_pred, labels, input_length, label_length = args y_pred = y_pred[:, :, :] return K.ctc_batch_cost(labels, y_pred, input_length, label_length) class SpeechModel251(BaseModel): ''' 定义CNN+CTC模型,使用函数式模型 输入层:200维的特征值序列,一条语音数据的最大长度设为1600(大约16s)\\ 隐藏层:卷积池化层,卷积核大小为3x3,池化窗口大小为2 \\ 隐藏层:全连接层 \\ 输出层:全连接层,神经元数量为self.MS_OUTPUT_SIZE,使用softmax作为激活函数, \\ CTC层:使用CTC的loss作为损失函数,实现连接性时序多输出 参数: \\ input_shape: tuple,默认值(1600, 200, 1) \\ output_shape: tuple,默认值(200, 1428) ''' def __init__(self, input_shape :tuple=(1600, 200, 1), output_size :int=1428) -> None: super().__init__() self.input_shape = input_shape self._pool_size = 8 self.output_shape = (input_shape[0] // self._pool_size, output_size) self._model_name = 'SpeechModel251' self.model, self.model_base = self._define_model(self.input_shape, self.output_shape[1]) def _define_model(self, input_shape, output_size) -> tuple: label_max_string_length = 64 input_data = Input(name='the_input', shape=input_shape) layer_h1 = Conv2D(32, (3,3), use_bias=False, activation='relu', padding='same', kernel_initializer='he_normal')(input_data) # 卷积层 layer_h1 = Dropout(0.05)(layer_h1) layer_h2 = Conv2D(32, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h1) # 卷积层 layer_h3 = MaxPooling2D(pool_size=2, strides=None, padding="valid")(layer_h2) # 池化层 #layer_h3 = Dropout(0.2)(layer_h2) # 随机中断部分神经网络连接,防止过拟合 layer_h3 = Dropout(0.05)(layer_h3) layer_h4 = Conv2D(64, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h3) # 卷积层 layer_h4 = Dropout(0.1)(layer_h4) layer_h5 = Conv2D(64, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h4) # 卷积层 layer_h6 = MaxPooling2D(pool_size=2, strides=None, padding="valid")(layer_h5) # 池化层 layer_h6 = Dropout(0.1)(layer_h6) layer_h7 = Conv2D(128, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h6) # 卷积层 layer_h7 = Dropout(0.15)(layer_h7) layer_h8 = Conv2D(128, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h7) # 卷积层 layer_h9 = MaxPooling2D(pool_size=2, strides=None, padding="valid")(layer_h8) # 池化层 layer_h9 = Dropout(0.15)(layer_h9) layer_h10 = Conv2D(128, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h9) # 卷积层 layer_h10 = Dropout(0.2)(layer_h10) layer_h11 = Conv2D(128, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h10) # 卷积层 layer_h12 = MaxPooling2D(pool_size=1, strides=None, padding="valid")(layer_h11) # 池化层 layer_h12 = Dropout(0.2)(layer_h12) layer_h13 = Conv2D(128, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h12) # 卷积层 layer_h13 = Dropout(0.2)(layer_h13) layer_h14 = Conv2D(128, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h13) # 卷积层 layer_h15 = MaxPooling2D(pool_size=1, strides=None, padding="valid")(layer_h14) # 池化层 #test=Model(inputs = input_data, outputs = layer_h12) #test.summary() layer_h16 = Reshape((self.output_shape[0], input_shape[1] // self._pool_size * 128))(layer_h15) #Reshape层 #layer_h6 = Dropout(0.2)(layer_h5) # 随机中断部分神经网络连接,防止过拟合 layer_h16 = Dropout(0.3)(layer_h16) layer_h17 = Dense(128, activation="relu", use_bias=True, kernel_initializer='he_normal')(layer_h16) # 全连接层 layer_h17 = Dropout(0.3)(layer_h17) layer_h18 = Dense(output_size, use_bias=True, kernel_initializer='he_normal')(layer_h17) # 全连接层 y_pred = Activation('softmax', name='Activation0')(layer_h18) model_base = Model(inputs = input_data, outputs = y_pred) #model_data.summary() labels = Input(name='the_labels', shape=[label_max_string_length], dtype='float32') input_length = Input(name='input_length', shape=[1], dtype='int64') label_length = Input(name='label_length', shape=[1], dtype='int64') # Keras doesn't currently support loss funcs with extra parameters # so CTC loss is implemented in a lambda layer loss_out = Lambda(ctc_lambda_func, output_shape=(1,), name='ctc')([y_pred, labels, input_length, label_length]) model = Model(inputs=[input_data, labels, input_length, label_length], outputs=loss_out) return model, model_base def get_loss_function(self) -> dict: return {'ctc': lambda y_true, y_pred: y_pred} def forward(self, data_input): batch_size = 1 in_len = np.zeros((batch_size),dtype = np.int32) in_len[0] = self.output_shape[0] x_in = np.zeros((batch_size,) + self.input_shape, dtype=np.float) for i in range(batch_size): x_in[i,0:len(data_input)] = data_input base_pred = self.model_base.predict(x = x_in) r = K.ctc_decode(base_pred, in_len, greedy = True, beam_width=100, top_paths=1) if(tf.__version__[0:2] == '1.'): r1 = r[0][0].eval(session=tf.compat.v1.Session()) else: r1 = r[0][0].numpy() speech_result = ctc_decode_delete_tail_blank(r1[0]) return speech_result class SpeechModel25(BaseModel): ''' 定义CNN+CTC模型,使用函数式模型 输入层:200维的特征值序列,一条语音数据的最大长度设为1600(大约16s)\\ 隐藏层:卷积池化层,卷积核大小为3x3,池化窗口大小为2 \\ 隐藏层:全连接层 \\ 输出层:全连接层,神经元数量为self.MS_OUTPUT_SIZE,使用softmax作为激活函数, \\ CTC层:使用CTC的loss作为损失函数,实现连接性时序多输出 参数: \\ input_shape: tuple,默认值(1600, 200, 1) \\ output_shape: tuple,默认值(200, 1428) ''' def __init__(self, input_shape :tuple=(1600, 200, 1), output_size :int=1428) -> None: super().__init__() self.input_shape = input_shape self._pool_size = 8 self.output_shape = (input_shape[0] // self._pool_size, output_size) self._model_name = 'SpeechModel25' self.model, self.model_base = self._define_model(self.input_shape, self.output_shape[1]) def _define_model(self, input_shape, output_size) -> tuple: label_max_string_length = 64 input_data = Input(name='the_input', shape=input_shape) layer_h1 = Conv2D(32, (3,3), use_bias=False, activation='relu', padding='same', kernel_initializer='he_normal')(input_data) # 卷积层 layer_h1 = Dropout(0.05)(layer_h1) layer_h2 = Conv2D(32, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h1) # 卷积层 layer_h3 = MaxPooling2D(pool_size=2, strides=None, padding="valid")(layer_h2) # 池化层 #layer_h3 = Dropout(0.2)(layer_h2) # 随机中断部分神经网络连接,防止过拟合 layer_h3 = Dropout(0.05)(layer_h3) layer_h4 = Conv2D(64, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h3) # 卷积层 layer_h4 = Dropout(0.1)(layer_h4) layer_h5 = Conv2D(64, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h4) # 卷积层 layer_h6 = MaxPooling2D(pool_size=2, strides=None, padding="valid")(layer_h5) # 池化层 layer_h6 = Dropout(0.1)(layer_h6) layer_h7 = Conv2D(128, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h6) # 卷积层 layer_h7 = Dropout(0.15)(layer_h7) layer_h8 = Conv2D(128, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h7) # 卷积层 layer_h9 = MaxPooling2D(pool_size=2, strides=None, padding="valid")(layer_h8) # 池化层 layer_h9 = Dropout(0.15)(layer_h9) layer_h10 = Conv2D(128, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h9) # 卷积层 layer_h10 = Dropout(0.2)(layer_h10) layer_h11 = Conv2D(128, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h10) # 卷积层 layer_h12 = MaxPooling2D(pool_size=1, strides=None, padding="valid")(layer_h11) # 池化层 #test=Model(inputs = input_data, outputs = layer_h12) #test.summary() layer_h12 = Reshape((self.output_shape[0], input_shape[1] // self._pool_size * 128))(layer_h12) #Reshape层 #layer_h6 = Dropout(0.2)(layer_h5) # 随机中断部分神经网络连接,防止过拟合 layer_h12 = Dropout(0.3)(layer_h12) layer_h13 = Dense(128, activation="relu", use_bias=True, kernel_initializer='he_normal')(layer_h12) # 全连接层 layer_h13 = Dropout(0.3)(layer_h13) layer_h14 = Dense(output_size, use_bias=True, kernel_initializer='he_normal')(layer_h13) # 全连接层 y_pred = Activation('softmax', name='Activation0')(layer_h14) model_base = Model(inputs = input_data, outputs = y_pred) #model_data.summary() labels = Input(name='the_labels', shape=[label_max_string_length], dtype='float32') input_length = Input(name='input_length', shape=[1], dtype='int64') label_length = Input(name='label_length', shape=[1], dtype='int64') # Keras doesn't currently support loss funcs with extra parameters # so CTC loss is implemented in a lambda layer loss_out = Lambda(ctc_lambda_func, output_shape=(1,), name='ctc')([y_pred, labels, input_length, label_length]) model = Model(inputs=[input_data, labels, input_length, label_length], outputs=loss_out) return model, model_base def get_loss_function(self) -> dict: return {'ctc': lambda y_true, y_pred: y_pred} def forward(self, data_input): batch_size = 1 in_len = np.zeros((batch_size),dtype = np.int32) in_len[0] = self.output_shape[0] x_in = np.zeros((batch_size,) + self.input_shape, dtype=np.float) for i in range(batch_size): x_in[i,0:len(data_input)] = data_input base_pred = self.model_base.predict(x = x_in) r = K.ctc_decode(base_pred, in_len, greedy = True, beam_width=100, top_paths=1) if(tf.__version__[0:2] == '1.'): r1 = r[0][0].eval(session=tf.compat.v1.Session()) else: r1 = r[0][0].numpy() speech_result = ctc_decode_delete_tail_blank(r1[0]) return speech_result class SpeechModel24(BaseModel): ''' 定义CNN+CTC模型,使用函数式模型 输入层:200维的特征值序列,一条语音数据的最大长度设为1600(大约16s)\\ 隐藏层:卷积池化层,卷积核大小为3x3,池化窗口大小为2 \\ 隐藏层:全连接层 \\ 输出层:全连接层,神经元数量为self.MS_OUTPUT_SIZE,使用softmax作为激活函数, \\ CTC层:使用CTC的loss作为损失函数,实现连接性时序多输出 参数: \\ input_shape: tuple,默认值(1600, 200, 1) \\ output_shape: tuple,默认值(200, 1428) ''' def __init__(self, input_shape :tuple=(1600, 200, 1), output_size :int=1428) -> None: super().__init__() self.input_shape = input_shape self._pool_size = 8 self.output_shape = (input_shape[0] // self._pool_size, output_size) self._model_name = 'SpeechModel24' self.model, self.model_base = self._define_model(self.input_shape, self.output_shape[1]) def _define_model(self, input_shape, output_size) -> tuple: label_max_string_length = 64 input_data = Input(name='the_input', shape=input_shape) layer_h1 = Conv2D(32, (3,3), use_bias=False, activation='relu', padding='same', kernel_initializer='he_normal')(input_data) # 卷积层 layer_h1 = Dropout(0.1)(layer_h1) layer_h2 = Conv2D(32, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h1) # 卷积层 layer_h3 = MaxPooling2D(pool_size=2, strides=None, padding="valid")(layer_h2) # 池化层 #layer_h3 = Dropout(0.2)(layer_h2) # 随机中断部分神经网络连接,防止过拟合 layer_h3 = Dropout(0.2)(layer_h3) layer_h4 = Conv2D(64, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h3) # 卷积层 layer_h4 = Dropout(0.2)(layer_h4) layer_h5 = Conv2D(64, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h4) # 卷积层 layer_h6 = MaxPooling2D(pool_size=2, strides=None, padding="valid")(layer_h5) # 池化层 layer_h6 = Dropout(0.3)(layer_h6) layer_h7 = Conv2D(128, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h6) # 卷积层 layer_h7 = Dropout(0.3)(layer_h7) layer_h8 = Conv2D(128, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h7) # 卷积层 layer_h9 = MaxPooling2D(pool_size=2, strides=None, padding="valid")(layer_h8) # 池化层 #test=Model(inputs = input_data, outputs = layer_h12) #test.summary() layer_h10 = Reshape((self.output_shape[0], input_shape[1] // self._pool_size * 128))(layer_h9) #Reshape层 #layer_h6 = Dropout(0.2)(layer_h5) # 随机中断部分神经网络连接,防止过拟合 layer_h10 = Dropout(0.3)(layer_h10) layer_h11 = Dense(128, activation="relu", use_bias=True, kernel_initializer='he_normal')(layer_h10) # 全连接层 layer_h11 = Dropout(0.3)(layer_h11) layer_h12 = Dense(output_size, use_bias=True, kernel_initializer='he_normal')(layer_h11) # 全连接层 y_pred = Activation('softmax', name='Activation0')(layer_h12) model_base = Model(inputs = input_data, outputs = y_pred) #model_data.summary() labels = Input(name='the_labels', shape=[label_max_string_length], dtype='float32') input_length = Input(name='input_length', shape=[1], dtype='int64') label_length = Input(name='label_length', shape=[1], dtype='int64') # Keras doesn't currently support loss funcs with extra parameters # so CTC loss is implemented in a lambda layer loss_out = Lambda(ctc_lambda_func, output_shape=(1,), name='ctc')([y_pred, labels, input_length, label_length]) model = Model(inputs=[input_data, labels, input_length, label_length], outputs=loss_out) return model, model_base def get_loss_function(self) -> dict: return {'ctc': lambda y_true, y_pred: y_pred} def forward(self, data_input): batch_size = 1 in_len = np.zeros((batch_size),dtype = np.int32) in_len[0] = self.output_shape[0] x_in = np.zeros((batch_size,) + self.input_shape, dtype=np.float) for i in range(batch_size): x_in[i,0:len(data_input)] = data_input base_pred = self.model_base.predict(x = x_in) r = K.ctc_decode(base_pred, in_len, greedy = True, beam_width=100, top_paths=1) if(tf.__version__[0:2] == '1.'): r1 = r[0][0].eval(session=tf.compat.v1.Session()) else: r1 = r[0][0].numpy() speech_result = ctc_decode_delete_tail_blank(r1[0]) return speech_result