#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ @author: nl8590687 """ # LSTM_CNN import keras as kr import numpy as np from keras.models import Sequential from keras.layers import Dense, Dropout, Input # , Flatten,LSTM,Convolution1D,MaxPooling1D,Merge from keras.layers import Conv1D,LSTM,MaxPooling1D, Lambda #, Merge, Conv2D, MaxPooling2D,Conv1D from keras import backend as K from readdata import DataSpeech class ModelSpeech(): # 语音模型类 def __init__(self,MS_EMBED_SIZE = 64,BATCH_SIZE = 32): ''' 初始化 ''' self.MS_EMBED_SIZE = MS_EMBED_SIZE # LSTM 的大小 self.BATCH_SIZE = BATCH_SIZE # 一次训练的batch self._model = self.CreateModel() def CreateModel(self): ''' 定义CNN/LSTM/CTC模型,使用函数式模型 输入层:39维的特征值序列,一条语音数据的最大长度设为1500(大约15s) 隐藏层一:1024个神经元的卷积层 隐藏层二:池化层,池化窗口大小为2 隐藏层三:Dropout层,需要断开的神经元的比例为0.3,防止过拟合 隐藏层四:循环层、LSTM层 隐藏层五:Dropout层,需要断开的神经元的比例为0.3,防止过拟合 输出层:全连接层,神经元数量为1279,使用softmax作为激活函数,使用CTC的loss作为损失函数 ''' # 每一帧使用13维mfcc特征及其13维一阶差分和13维二阶差分表示,最大信号序列长度为1500 layer_input = Input((1500,39)) layer_h1 = Conv1D(256, 5, use_bias=True, padding="valid")(layer_input) # 卷积层 layer_h2 = MaxPooling1D(pool_size=2, strides=None, padding="valid")(layer_h1) # 池化层 layer_h3 = Dropout(0.2)(layer_h2) # 随机中断部分神经网络连接,防止过拟合 layer_h4 = LSTM(256, activation='relu', use_bias=True)(layer_h3) # LSTM层 layer_h5 = Dropout(0.2)(layer_h4) # 随机中断部分神经网络连接,防止过拟合 layer_h6 = Dense(1279, activation="softmax")(layer_h5) # 全连接层 #labels = Input(name='the_labels', shape=[60], dtype='float32') layer_out = Lambda(ctc_lambda_func,output_shape=(1279,), name='ctc')(layer_h6) # CTC _model = Model(inputs = layer_input, outputs = layer_out) #_model = Sequential() #_model.add(Conv1D(256, 5,input_shape=(1500,39), use_bias=True, padding="valid")) #_model.add(MaxPooling1D(pool_size=2, strides=None, padding="valid")) #_model.add(Dropout(0.3)) # 随机中断部分神经网络连接 #_model.add(LSTM(256, activation='relu', use_bias=True)) #_model.add(Dropout(0.3)) # 随机中断部分神经网络连接 #_model.add(Dense(1279, activation="softmax")) ##_model.add(Lambda(ctc_lambda_func,output_shape=(1,),name='ctc')) #_model.compile(optimizer="sgd", loss='categorical_crossentropy',metrics=["accuracy"]) _model.compile(optimizer="sgd", loss='ctc',metrics=["accuracy"]) return _model def ctc_lambda_func(args): #labels, y_pred, input_length, label_length = args y_pred = args #y_pred = y_pred[:, 2:, :] return K.ctc_decode(y_pred,1279) #return K.ctc_batch_cost(labels, y_pred, input_length, label_length) def TrainModel(self,datapath,epoch = 2,save_step=1000,filename='model_speech/LSTM_CNN_model'): ''' 训练模型 参数: datapath: 数据保存的路径 epoch: 迭代轮数 save_step: 每多少步保存一次模型 filename: 默认保存文件名,不含文件后缀名 ''' data=DataSpeech(datapath) data.LoadDataList('train') num_data=DataSpeech.GetDataNum() # 获取数据的数量 for epoch in range(epoch): # 迭代轮数 n_step = 0 # 迭代数据数 while True: try: data_input, data_label = data.GetData(n_step) # 读数据 pass # 需要写一个生成器函数 self._model.fit_generator(yielddatas, save_step) n_step += 1 except StopIteration: print('[error] generator error. please check data format.') break self.SaveModel(comment='_e_'+str(epoch)+'_step_'+str(n_step)) def LoadModel(self,filename='model_speech/LSTM_CNN_model.model'): ''' 加载模型参数 ''' self._model.load_weights(filename) def SaveModel(self,filename='model_speech/LSTM_CNN_model',comment=''): ''' 保存模型参数 ''' self._model.save_weights(filename+comment+'.model') def TestModel(self): ''' 测试检验模型效果 ''' pass def Predict(self,x): ''' 预测结果 ''' r = predict_on_batch(x) return r pass @property def model(self): ''' 返回keras model ''' return self._model if(__name__=='__main__'): pass