#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # Copyright 2016-2099 Ailemon.net # # This file is part of ASRT Speech Recognition Tool. # # ASRT is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # ASRT is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with ASRT. If not, see . # ============================================================================ """ @author: nl8590687 ASRT语音识别基于HTTP协议的API服务器程序 """ import argparse import base64 import json from flask import Flask, Response, request from speech_model import ModelSpeech from speech_model_zoo import SpeechModel251BN from speech_features import Spectrogram from LanguageModel2 import ModelLanguage from utils.ops import decode_wav_bytes API_STATUS_CODE_OK = 200000 # OK API_STATUS_CODE_CLIENT_ERROR = 400000 API_STATUS_CODE_CLIENT_ERROR_FORMAT = 400001 # 请求数据格式错误 API_STATUS_CODE_CLIENT_ERROR_CONFIG = 400002 # 请求数据配置不支持 API_STATUS_CODE_SERVER_ERROR = 500000 API_STATUS_CODE_SERVER_ERROR_RUNNING = 500001 # 服务器运行中出错 parser = argparse.ArgumentParser(description='ASRT HTTP+Json RESTful API Service') parser.add_argument('--listen', default='0.0.0.0', type=str, help='the network to listen') parser.add_argument('--port', default='20001', type=str, help='the port to listen') args = parser.parse_args() app = Flask("ASRT API Service") AUDIO_LENGTH = 1600 AUDIO_FEATURE_LENGTH = 200 CHANNELS = 1 # 默认输出的拼音的表示大小是1428,即1427个拼音+1个空白块 OUTPUT_SIZE = 1428 sm251bn = SpeechModel251BN( input_shape=(AUDIO_LENGTH, AUDIO_FEATURE_LENGTH, CHANNELS), output_size=OUTPUT_SIZE ) feat = Spectrogram() ms = ModelSpeech(sm251bn, feat, max_label_length=64) ms.load_model('save_models/' + sm251bn.get_model_name() + '.model.h5') ml = ModelLanguage('model_language') ml.LoadModel() class AsrtApiResponse: ''' ASRT语音识别基于HTTP协议的API接口响应类 ''' def __init__(self, status_code, status_message='', result=''): self.status_code = status_code self.status_message = status_message self.result = result def to_json(self): ''' 类转json ''' return json.dumps(self, default=lambda o: o.__dict__, sort_keys=True) # api接口根url:GET @app.route('/', methods=["GET"]) def index_get(): ''' 根路径handle GET方法 ''' buffer = '' with open('assets/default.html', 'r', encoding='utf-8') as file_handle: buffer = file_handle.read() return Response(buffer, mimetype='text/html; charset=utf-8') # api接口根url:POST @app.route('/', methods=["POST"]) def index_post(): ''' 根路径handle POST方法 ''' json_data = AsrtApiResponse(API_STATUS_CODE_OK, 'ok') buffer = json_data.to_json() return Response(buffer, mimetype='application/json') # 获取分类列表 @app.route('/', methods=["POST"]) def recognition_post(level): ''' 其他路径 POST方法 ''' #读取json文件内容 try: if level == 'speech': request_data = request.get_json() samples = request_data['samples'] wavdata_bytes = base64.urlsafe_b64decode(bytes(samples,encoding='utf-8')) sample_rate = request_data['sample_rate'] channels = request_data['channels'] byte_width = request_data['byte_width'] wavdata = decode_wav_bytes(samples_data=wavdata_bytes, channels=channels, byte_width=byte_width) result = ms.recognize_speech(wavdata, sample_rate) json_data = AsrtApiResponse(API_STATUS_CODE_OK, 'speech level') json_data.result = result buffer = json_data.to_json() print('output:', buffer) return Response(buffer, mimetype='application/json') elif level == 'language': request_data = request.get_json() seq_pinyin = request_data['sequence_pinyin'] result = ml.SpeechToText(seq_pinyin) json_data = AsrtApiResponse(API_STATUS_CODE_OK, 'language level') json_data.result = result buffer = json_data.to_json() print('output:', buffer) return Response(buffer, mimetype='application/json') elif level == 'all': request_data = request.get_json() samples = request_data['samples'] wavdata_bytes = base64.urlsafe_b64decode(samples) sample_rate = request_data['sample_rate'] channels = request_data['channels'] byte_width = request_data['byte_width'] wavdata = decode_wav_bytes(samples_data=wavdata_bytes, channels=channels, byte_width=byte_width) result_speech = ms.recognize_speech(wavdata, sample_rate) result = ml.SpeechToText(result_speech) json_data = AsrtApiResponse(API_STATUS_CODE_OK, 'all level') json_data.result = result buffer = json_data.to_json() print('ASRT Result:', result,'output:', buffer) return Response(buffer, mimetype='application/json') else: request_data = request.get_json() print('input:', request_data) json_data = AsrtApiResponse(API_STATUS_CODE_CLIENT_ERROR, '') buffer = json_data.to_json() print('output:', buffer) return Response(buffer, mimetype='application/json') except Exception as except_general: request_data = request.get_json() #print(request_data['sample_rate'], request_data['channels'], # request_data['byte_width'], len(request_data['samples']), # request_data['samples'][-100:]) json_data = AsrtApiResponse(API_STATUS_CODE_SERVER_ERROR, str(except_general)) buffer = json_data.to_json() #print("input:", request_data, "\n", "output:", buffer) print("output:", buffer, "error:", except_general) return Response(buffer, mimetype='application/json') if __name__ == '__main__': # for development env #app.run(host='0.0.0.0', port=20001) # for production env import waitress waitress.serve(app, host=args.listen, port=args.port)