#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ @author: nl8590687 用于测试语音识别系统语音模型的程序 """ import platform as plat import os import tensorflow as tf from keras.backend.tensorflow_backend import set_session from SpeechModel251 import ModelSpeech os.environ["CUDA_VISIBLE_DEVICES"] = "0" #进行配置,使用90%的GPU config = tf.compat.v1.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = 0.9 #config.gpu_options.allow_growth=True #不全部占满显存, 按需分配 sess = tf.compat.v1.Session(config=config) tf.compat.v1.keras.backend.set_session(sess) datapath = '' modelpath = 'model_speech' if(not os.path.exists(modelpath)): # 判断保存模型的目录是否存在 os.makedirs(modelpath) # 如果不存在,就新建一个,避免之后保存模型的时候炸掉 system_type = plat.system() # 由于不同的系统的文件路径表示不一样,需要进行判断 if(system_type == 'Windows'): datapath = 'D:\\SpeechData' modelpath = modelpath + '\\' elif(system_type == 'Linux'): datapath = 'dataset' modelpath = modelpath + '/' else: print('*[Message] Unknown System\n') datapath = 'dataset' modelpath = modelpath + '/' ms = ModelSpeech(datapath) ms.LoadModel(modelpath + 'm251/speech_model251_e_0_step_42500.model') ms.TestModel(datapath, str_dataset='test', data_count = 128, out_report = True) #r = ms.RecognizeSpeech_FromFile('E:\\语音数据集\\ST-CMDS-20170001_1-OS\\20170001P00241I0053.wav') #r = ms.RecognizeSpeech_FromFile('E:\\语音数据集\\ST-CMDS-20170001_1-OS\\20170001P00020I0087.wav') #r = ms.RecognizeSpeech_FromFile('E:\\语音数据集\\wav\\train\\A11\\A11_167.WAV') #r = ms.RecognizeSpeech_FromFile('E:\\语音数据集\\wav\\test\\D4\\D4_750.wav') #print('*[提示] 语音识别结果:\n',r)