feat: 添加24和25模型到model zoo

This commit is contained in:
nl 2021-11-22 21:42:59 +08:00
parent 1fba22ee4c
commit bff0204b30
1 changed files with 209 additions and 31 deletions

View File

@ -39,22 +39,30 @@ class BaseModel:
self.output_shape = None
def get_model(self) -> tuple:
raise Exception("method not implemented")
return self.model, self.model_base
def get_train_model(self) -> Model:
raise Exception("method not implemented")
return self.model
def get_eval_model(self) -> Model:
raise Exception("method not implemented")
return self.model_base
def load_weights(self, filename) -> None:
raise Exception("method not implemented")
def save_weights(self, filename) -> None:
raise Exception("method not implemented")
def summary(self) -> None:
self.model.summary()
def get_model_name(self) -> str:
raise Exception("method not implemented")
return self._model_name
def load_weights(self, filename :str) -> None:
self.model.load_weights(filename)
def save_weights(self, filename :str) -> None:
self.model.save_weights(filename + '.model.h5')
self.model_base.save_weights(filename + '.model.base.h5')
f = open('epoch_'+self._model_name+'.txt','w')
f.write(filename)
f.close()
def get_loss_function(self):
raise Exception("method not implemented")
@ -148,33 +156,203 @@ class SpeechModel251(BaseModel):
return model, model_base
def get_model(self) -> tuple:
return self.model, self.model_base
def get_loss_function(self) -> dict:
return {'ctc': lambda y_true, y_pred: y_pred}
def get_train_model(self) -> Model:
return self.model
def forward(self, data_input):
batch_size = 1
in_len = np.zeros((batch_size),dtype = np.int32)
def get_eval_model(self) -> Model:
return self.model_base
in_len[0] = self.output_shape[0]
def summary(self) -> None:
self.model.summary()
x_in = np.zeros((batch_size,) + self.input_shape, dtype=np.float)
def get_model_name(self) -> str:
return self._model_name
for i in range(batch_size):
x_in[i,0:len(data_input)] = data_input
def load_weights(self, filename :str) -> None:
self.model.load_weights(filename)
base_pred = self.model_base.predict(x = x_in)
r = K.ctc_decode(base_pred, in_len, greedy = True, beam_width=100, top_paths=1)
def save_weights(self, filename :str) -> None:
self.model.save_weights(filename + '.model.h5')
self.model_base.save_weights(filename + '.model.base.h5')
# 需要安装 hdf5 模块
#self.model.save(filename + '.h5')
#self.model_base.save(filename + '.base.h5')
f = open('epoch_'+self._model_name+'.txt','w')
f.write(filename)
f.close()
if(tf.__version__[0:2] == '1.'):
r1 = r[0][0].eval(session=tf.compat.v1.Session())
else:
r1 = r[0][0].numpy()
p = 0
while p < len(r1[0])-1 and r1[0][p] != -1:
p += 1
return r1[0][0:p]
class SpeechModel25(BaseModel):
'''
定义CNN+CTC模型使用函数式模型
输入层200维的特征值序列一条语音数据的最大长度设为1600大约16s\\
隐藏层卷积池化层卷积核大小为3x3池化窗口大小为2 \\
隐藏层全连接层 \\
输出层全连接层神经元数量为self.MS_OUTPUT_SIZE使用softmax作为激活函数 \\
CTC层使用CTC的loss作为损失函数实现连接性时序多输出
参数 \\
input_shape: tuple默认值(1600, 200, 1) \\
output_shape: tuple默认值(200, 1428)
'''
def __init__(self, input_shape :tuple=(1600, 200, 1), output_size :int=1428) -> None:
super().__init__()
self.input_shape = input_shape
self._pool_size = 8
self.output_shape = (input_shape[0] // self._pool_size, output_size)
self._model_name = 'SpeechModel25'
self.model, self.model_base = self._define_model(self.input_shape, self.output_shape[1])
def _define_model(self, input_shape, output_size) -> tuple:
label_max_string_length = 64
input_data = Input(name='the_input', shape=input_shape)
layer_h1 = Conv2D(32, (3,3), use_bias=False, activation='relu', padding='same', kernel_initializer='he_normal')(input_data) # 卷积层
layer_h1 = Dropout(0.05)(layer_h1)
layer_h2 = Conv2D(32, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h1) # 卷积层
layer_h3 = MaxPooling2D(pool_size=2, strides=None, padding="valid")(layer_h2) # 池化层
#layer_h3 = Dropout(0.2)(layer_h2) # 随机中断部分神经网络连接,防止过拟合
layer_h3 = Dropout(0.05)(layer_h3)
layer_h4 = Conv2D(64, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h3) # 卷积层
layer_h4 = Dropout(0.1)(layer_h4)
layer_h5 = Conv2D(64, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h4) # 卷积层
layer_h6 = MaxPooling2D(pool_size=2, strides=None, padding="valid")(layer_h5) # 池化层
layer_h6 = Dropout(0.1)(layer_h6)
layer_h7 = Conv2D(128, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h6) # 卷积层
layer_h7 = Dropout(0.15)(layer_h7)
layer_h8 = Conv2D(128, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h7) # 卷积层
layer_h9 = MaxPooling2D(pool_size=2, strides=None, padding="valid")(layer_h8) # 池化层
layer_h9 = Dropout(0.15)(layer_h9)
layer_h10 = Conv2D(128, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h9) # 卷积层
layer_h10 = Dropout(0.2)(layer_h10)
layer_h11 = Conv2D(128, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h10) # 卷积层
layer_h12 = MaxPooling2D(pool_size=1, strides=None, padding="valid")(layer_h11) # 池化层
#test=Model(inputs = input_data, outputs = layer_h12)
#test.summary()
layer_h12 = Reshape((self.output_shape[0], 3200))(layer_h12) #Reshape层
#layer_h6 = Dropout(0.2)(layer_h5) # 随机中断部分神经网络连接,防止过拟合
layer_h12 = Dropout(0.3)(layer_h12)
layer_h13 = Dense(128, activation="relu", use_bias=True, kernel_initializer='he_normal')(layer_h12) # 全连接层
layer_h13 = Dropout(0.3)(layer_h13)
layer_h14 = Dense(output_size, use_bias=True, kernel_initializer='he_normal')(layer_h13) # 全连接层
y_pred = Activation('softmax', name='Activation0')(layer_h14)
model_base = Model(inputs = input_data, outputs = y_pred)
#model_data.summary()
labels = Input(name='the_labels', shape=[label_max_string_length], dtype='float32')
input_length = Input(name='input_length', shape=[1], dtype='int64')
label_length = Input(name='label_length', shape=[1], dtype='int64')
# Keras doesn't currently support loss funcs with extra parameters
# so CTC loss is implemented in a lambda layer
loss_out = Lambda(ctc_lambda_func, output_shape=(1,), name='ctc')([y_pred, labels, input_length, label_length])
model = Model(inputs=[input_data, labels, input_length, label_length], outputs=loss_out)
return model, model_base
def get_loss_function(self) -> dict:
return {'ctc': lambda y_true, y_pred: y_pred}
def forward(self, data_input):
batch_size = 1
in_len = np.zeros((batch_size),dtype = np.int32)
in_len[0] = self.output_shape[0]
x_in = np.zeros((batch_size,) + self.input_shape, dtype=np.float)
for i in range(batch_size):
x_in[i,0:len(data_input)] = data_input
base_pred = self.model_base.predict(x = x_in)
r = K.ctc_decode(base_pred, in_len, greedy = True, beam_width=100, top_paths=1)
if(tf.__version__[0:2] == '1.'):
r1 = r[0][0].eval(session=tf.compat.v1.Session())
else:
r1 = r[0][0].numpy()
p = 0
while p < len(r1[0])-1 and r1[0][p] != -1:
p += 1
return r1[0][0:p]
class SpeechModel24(BaseModel):
'''
定义CNN+CTC模型使用函数式模型
输入层200维的特征值序列一条语音数据的最大长度设为1600大约16s\\
隐藏层卷积池化层卷积核大小为3x3池化窗口大小为2 \\
隐藏层全连接层 \\
输出层全连接层神经元数量为self.MS_OUTPUT_SIZE使用softmax作为激活函数 \\
CTC层使用CTC的loss作为损失函数实现连接性时序多输出
参数 \\
input_shape: tuple默认值(1600, 200, 1) \\
output_shape: tuple默认值(200, 1428)
'''
def __init__(self, input_shape :tuple=(1600, 200, 1), output_size :int=1428) -> None:
super().__init__()
self.input_shape = input_shape
self._pool_size = 8
self.output_shape = (input_shape[0] // self._pool_size, output_size)
self._model_name = 'SpeechModel24'
self.model, self.model_base = self._define_model(self.input_shape, self.output_shape[1])
def _define_model(self, input_shape, output_size) -> tuple:
label_max_string_length = 64
input_data = Input(name='the_input', shape=input_shape)
layer_h1 = Conv2D(32, (3,3), use_bias=False, activation='relu', padding='same', kernel_initializer='he_normal')(input_data) # 卷积层
layer_h1 = Dropout(0.1)(layer_h1)
layer_h2 = Conv2D(32, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h1) # 卷积层
layer_h3 = MaxPooling2D(pool_size=2, strides=None, padding="valid")(layer_h2) # 池化层
#layer_h3 = Dropout(0.2)(layer_h2) # 随机中断部分神经网络连接,防止过拟合
layer_h3 = Dropout(0.2)(layer_h3)
layer_h4 = Conv2D(64, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h3) # 卷积层
layer_h4 = Dropout(0.2)(layer_h4)
layer_h5 = Conv2D(64, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h4) # 卷积层
layer_h6 = MaxPooling2D(pool_size=2, strides=None, padding="valid")(layer_h5) # 池化层
layer_h6 = Dropout(0.3)(layer_h6)
layer_h7 = Conv2D(128, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h6) # 卷积层
layer_h7 = Dropout(0.3)(layer_h7)
layer_h8 = Conv2D(128, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h7) # 卷积层
layer_h9 = MaxPooling2D(pool_size=2, strides=None, padding="valid")(layer_h8) # 池化层
#test=Model(inputs = input_data, outputs = layer_h12)
#test.summary()
layer_h10 = Reshape((self.output_shape[0], 3200))(layer_h19) #Reshape层
#layer_h6 = Dropout(0.2)(layer_h5) # 随机中断部分神经网络连接,防止过拟合
layer_h10 = Dropout(0.3)(layer_h10)
layer_h11 = Dense(128, activation="relu", use_bias=True, kernel_initializer='he_normal')(layer_h10) # 全连接层
layer_h11 = Dropout(0.3)(layer_h11)
layer_h12 = Dense(output_size, use_bias=True, kernel_initializer='he_normal')(layer_h11) # 全连接层
y_pred = Activation('softmax', name='Activation0')(layer_h12)
model_base = Model(inputs = input_data, outputs = y_pred)
#model_data.summary()
labels = Input(name='the_labels', shape=[label_max_string_length], dtype='float32')
input_length = Input(name='input_length', shape=[1], dtype='int64')
label_length = Input(name='label_length', shape=[1], dtype='int64')
# Keras doesn't currently support loss funcs with extra parameters
# so CTC loss is implemented in a lambda layer
loss_out = Lambda(ctc_lambda_func, output_shape=(1,), name='ctc')([y_pred, labels, input_length, label_length])
model = Model(inputs=[input_data, labels, input_length, label_length], outputs=loss_out)
return model, model_base
def get_loss_function(self) -> dict:
return {'ctc': lambda y_true, y_pred: y_pred}