diff --git a/SpeechModel4.py b/SpeechModel4.py index 43a65b4..fa9cd59 100644 --- a/SpeechModel4.py +++ b/SpeechModel4.py @@ -427,7 +427,7 @@ if(__name__=='__main__'): ms = ModelSpeech(datapath) - ms.LoadModel(modelpath + 'speech_model_e_0_step_30.model') + ms.LoadModel(modelpath + '1/speech_model_e_0_step_80.model') #ms.TrainModel(datapath, epoch = 2, batch_size = 8, save_step = 10) #ms.TestModel(datapath, str_dataset='dev', data_count = 32) r = ms.RecognizeSpeech_FromFile('E:\\语音数据集\\wav\\test\\D4\\D4_750.wav') diff --git a/SpeechModel5.py b/SpeechModel5.py new file mode 100644 index 0000000..63750d1 --- /dev/null +++ b/SpeechModel5.py @@ -0,0 +1,354 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +@author: nl8590687 +""" +import platform as plat +import os + +from general_function.file_wav import * +import numpy as np + +# LSTM_CNN +import keras as kr +import numpy as np + +from keras.models import Sequential, Model +from keras.layers import Dense, Dropout, Input # , Flatten,LSTM,Convolution1D,MaxPooling1D,Merge +from keras.layers import Conv1D,LSTM,MaxPooling1D, Lambda, TimeDistributed, Activation #, Merge, Conv2D, MaxPooling2D,Conv1D +from keras.layers.normalization import BatchNormalization +from keras.layers.merge import add, concatenate + +from keras.layers.advanced_activations import LeakyReLU + +from keras import backend as K +from keras.optimizers import SGD, Adadelta + +from readdata import DataSpeech +from neural_network.ctc_layer import ctc_layer +from neural_network.ctc_loss import ctc_batch_loss + +#from keras.backend.tensorflow_backend import ctc_batch_cost + +class ModelSpeech(): # 语音模型类 + def __init__(self, datapath): + ''' + 初始化 + 默认输出的拼音的表示大小是1283,即1282个拼音+1个空白块 + ''' + MS_OUTPUT_SIZE = 1417 + self.MS_OUTPUT_SIZE = MS_OUTPUT_SIZE # 神经网络最终输出的每一个字符向量维度的大小 + #self.BATCH_SIZE = BATCH_SIZE # 一次训练的batch + self.label_max_string_length = 64 + self.AUDIO_LENGTH = 1600 + self.AUDIO_FEATURE_LENGTH = 200 + self._model = self.CreateModel() + + self.data = DataSpeech(datapath) + + def CreateModel(self): + ''' + 定义CNN/LSTM/CTC模型,使用函数式模型 + 输入层:39维的特征值序列,一条语音数据的最大长度设为1500(大约15s) + 隐藏层一:1024个神经元的卷积层 + 隐藏层二:池化层,池化窗口大小为2 + 隐藏层三:Dropout层,需要断开的神经元的比例为0.2,防止过拟合 + 隐藏层四:循环层、LSTM层 + 隐藏层五:Dropout层,需要断开的神经元的比例为0.2,防止过拟合 + 隐藏层六:全连接层,神经元数量为self.MS_OUTPUT_SIZE,使用softmax作为激活函数, + 输出层:自定义层,即CTC层,使用CTC的loss作为损失函数 + + 当前未完成,网络模型可能还需要修改 + ''' + # 每一帧使用13维mfcc特征及其13维一阶差分和13维二阶差分表示,最大信号序列长度为1500 + input_data = Input(name='the_input', shape=(self.AUDIO_LENGTH, self.AUDIO_FEATURE_LENGTH)) + + layer_h1_c = Conv1D(filters=256, kernel_size=5, strides=1, use_bias=True, padding="same")(input_data) # 卷积层 + #layer_h1_a = Activation('relu', name='relu0')(layer_h1_c) + layer_h1_a = LeakyReLU(alpha=0.3)(layer_h1_c) # 高级激活层 + layer_h1 = MaxPooling1D(pool_size=2, strides=None, padding="valid")(layer_h1_a) # 池化层 + + layer_h2 = BatchNormalization()(layer_h1) + + layer_h3_c = Conv1D(filters=256, kernel_size=5, strides=1, use_bias=True, padding="same")(layer_h2) # 卷积层 + layer_h3_a = LeakyReLU(alpha=0.3)(layer_h3_c) # 高级激活层 + #layer_h3_a = Activation('relu', name='relu1')(layer_h3_c) + layer_h3 = MaxPooling1D(pool_size=2, strides=None, padding="valid")(layer_h3_a) # 池化层 + + layer_h4 = Dropout(0.1)(layer_h3) # 随机中断部分神经网络连接,防止过拟合 + + layer_h5 = Dense(256, use_bias=True, activation="softmax")(layer_h4) # 全连接层 + layer_h6 = Dense(256, use_bias=True, activation="softmax")(layer_h5) # 全连接层 + #layer_h4 = Activation('softmax', name='softmax0')(layer_h4_d1) + + layer_h7a = LSTM(256, activation='softmax', use_bias=True, return_sequences=True)(layer_h6) # LSTM层 + layer_h7b = LSTM(256, activation='softmax', use_bias=True, return_sequences=True)(layer_h6) # LSTM层 + + layer_h7_merged = add([layer_h7a, layer_h7b]) + + layer_h8a = LSTM(256, activation='softmax', use_bias=True, return_sequences=True)(layer_h7_merged) # LSTM层 + layer_h8b = LSTM(256, activation='softmax', use_bias=True, return_sequences=True)(layer_h7_merged) # LSTM层 + + layer_h8 = concatenate([layer_h8a, layer_h8b]) + #layer_h10 = Activation('softmax', name='softmax1')(layer_h9) + + #layer_h10_dropout = Dropout(0.1)(layer_h10) # 随机中断部分神经网络连接,防止过拟合 + + #layer_h11 = Dense(512, use_bias=True, activation="softmax")(layer_h8) # 全连接层 + layer_h12 = Dense(self.MS_OUTPUT_SIZE, use_bias=True, activation="softmax")(layer_h8) # 全连接层 + #layer_h6 = Dense(1283, activation="softmax")(layer_h5) # 全连接层 + + y_pred = Activation('softmax', name='softmax2')(layer_h12) + model_data = Model(inputs = input_data, outputs = y_pred) + #model_data.summary() + + + #labels = Input(name='the_labels', shape=[60], dtype='float32') + + labels = Input(name='the_labels', shape=[self.label_max_string_length], dtype='float32') + input_length = Input(name='input_length', shape=[1], dtype='int64') + label_length = Input(name='label_length', shape=[1], dtype='int64') + # Keras doesn't currently support loss funcs with extra parameters + # so CTC loss is implemented in a lambda layer + + #layer_out = Lambda(ctc_lambda_func,output_shape=(self.MS_OUTPUT_SIZE, ), name='ctc')([y_pred, labels, input_length, label_length])#(layer_h6) # CTC + loss_out = Lambda(self.ctc_lambda_func, output_shape=(1,), name='ctc')([y_pred, labels, input_length, label_length]) + + #y_out = Activation('softmax', name='softmax3')(loss_out) + model = Model(inputs=[input_data, labels, input_length, label_length], outputs=loss_out) + + model.summary() + + # clipnorm seems to speeds up convergence + #sgd = SGD(lr=0.0001, decay=1e-8, momentum=0.9, nesterov=True, clipnorm=5) + ada_d = Adadelta(lr = 0.01, rho = 0.95, epsilon = 1e-06) + + #model.compile(loss={'ctc': lambda y_true, y_pred: y_pred}, optimizer = sgd, metrics=['accuracy']) + model.compile(loss={'ctc': lambda y_true, y_pred: y_pred}, optimizer = ada_d, metrics=['accuracy']) + + + # captures output of softmax so we can decode the output during visualization + self.test_func = K.function([input_data], [y_pred]) + + print('[*提示] 创建模型成功,模型编译成功') + return model + + def ctc_lambda_func(self, args): + y_pred, labels, input_length, label_length = args + #print(y_pred) + y_pred = y_pred[:, :, 0:-2] + #return K.ctc_decode(y_pred,self.MS_OUTPUT_SIZE) + return K.ctc_batch_cost(labels, y_pred, input_length, label_length) + + + + def TrainModel(self, datapath, epoch = 2, batch_size = 32, save_step = 1000, filename = 'model_speech/speech_model'): + ''' + 训练模型 + 参数: + datapath: 数据保存的路径 + epoch: 迭代轮数 + save_step: 每多少步保存一次模型 + filename: 默认保存文件名,不含文件后缀名 + ''' + #data=DataSpeech(datapath) + data = self.data + data.LoadDataList('train') + num_data = data.GetDataNum() # 获取数据的数量 + for epoch in range(epoch): # 迭代轮数 + print('[running] train epoch %d .' % epoch) + n_step = 0 # 迭代数据数 + while (n_step * save_step < num_data): + try: + print('[message] epoch %d . Have train datas %d+'%(epoch, n_step*save_step)) + # data_genetator是一个生成器函数 + yielddatas = data.data_genetator(batch_size, self.AUDIO_LENGTH) + #self._model.fit_generator(yielddatas, save_step, nb_worker=2) + self._model.fit_generator(yielddatas, save_step) + n_step += 1 + except StopIteration: + print('[error] generator error. please check data format.') + break + + self.SaveModel(comment='_e_'+str(epoch)+'_step_'+str(n_step * save_step)) + + + def LoadModel(self, filename = 'model_speech/speech_model_e_0_step_1.model'): + ''' + 加载模型参数 + ''' + self._model.load_weights(filename) + print('*[提示] 已加载模型') + + def SaveModel(self, filename = 'model_speech/speech_model', comment = ''): + ''' + 保存模型参数 + ''' + self._model.save_weights(filename + comment + '.model') + + def TestModel(self, datapath, str_dataset='dev', data_count = 32): + ''' + 测试检验模型效果 + ''' + #data=DataSpeech(datapath) + data = self.data + data.LoadDataList(str_dataset) + num_data = data.GetDataNum() # 获取数据的数量 + if(data_count <= 0 or data_count > num_data): # 当data_count为小于等于0或者大于测试数据量的值时,则使用全部数据来测试 + data_count = num_data + + try: + gen = data.data_genetator(data_count) + #for i in range(1): + # [X, y, input_length, label_length ], labels = gen + #r = self._model.test_on_batch([X, y, input_length, label_length ], labels) + r = self._model.evaluate_generator(generator = gen, steps = 1, max_queue_size = data_count, workers = 1, use_multiprocessing = False) + print(r) + except StopIteration: + print('[Error] Model Test Error. please check data format.') + + def Predict(self,x): + ''' + 预测结果 + ''' + r = self._model.predict_on_batch(x) + print(r) + return r + pass + + def decode_batch(self, test_func, word_batch): + out = test_func([word_batch])[0] + ret = [] + for j in range(out.shape[0]): + out_best = list(np.argmax(out[j, 2:], 1)) + out_best = [k for k, g in itertools.groupby(out_best)] + outstr = labels_to_text(out_best) + ret.append(outstr) + return ret + + def show_edit_distance(self, num): + num_left = num + mean_norm_ed = 0.0 + mean_ed = 0.0 + while num_left > 0: + word_batch = next(self.text_img_gen)[0] + num_proc = min(word_batch['the_input'].shape[0], num_left) + decoded_res = decode_batch(self.test_func, word_batch['the_input'][0:num_proc]) + for j in range(num_proc): + edit_dist = editdistance.eval(decoded_res[j], word_batch['source_str'][j]) + mean_ed += float(edit_dist) + mean_norm_ed += float(edit_dist) / len(word_batch['source_str'][j]) + num_left -= num_proc + mean_norm_ed = mean_norm_ed / num + mean_ed = mean_ed / num + print('\nOut of %d samples: Mean edit distance: %.3f Mean normalized edit distance: %0.3f' + % (num, mean_ed, mean_norm_ed)) + + def RecognizeSpeech(self, wavsignal, fs): + ''' + 最终做语音识别用的函数,识别一个wav序列的语音 + 不过这里现在还有bug + ''' + + #data = self.data + data = DataSpeech('E:\\语音数据集') + data.LoadDataList('dev') + # 获取输入特征 + #data_input = data.GetMfccFeature(wavsignal, fs) + data_input = data.GetFrequencyFeature(wavsignal, fs) + + arr_zero = np.zeros((1, 200), dtype=np.int16) #一个全是0的行向量 + + #import matplotlib.pyplot as plt + #plt.subplot(111) + #plt.imshow(data_input, cmap=plt.get_cmap('gray')) + #plt.show() + + #while(len(data_input)<1600): #长度不够时补全到1600 + # data_input = np.row_stack((data_input,arr_zero)) + #print(len(data_input)) + + list_symbol = data.list_symbol # 获取拼音列表 + + labels = [ list_symbol[0] ] + #while(len(labels) < 64): + # labels.append('') + + labels_num = [] + for i in labels: + labels_num.append(data.SymbolToNum(i)) + + + + data_input = np.array(data_input, dtype=np.int16) + data_input = data_input.reshape(data_input.shape[0],data_input.shape[1]) + + labels_num = np.array(labels_num, dtype=np.int16) + labels_num = labels_num.reshape(labels_num.shape[0]) + + input_length = np.array([data_input.shape[0] // 4 - 3], dtype=np.int16) + input_length = np.array(input_length) + input_length = input_length.reshape(input_length.shape[0]) + + label_length = np.array([labels_num.shape[0]], dtype=np.int16) + label_length = np.array(label_length) + label_length = label_length.reshape(label_length.shape[0]) + + x = [data_input, labels_num, input_length, label_length] + #x = next(data.data_genetator(1, self.AUDIO_LENGTH)) + #x = kr.utils.np_utils.to_categorical(x) + + print(x) + x=np.array(x) + + pred = self._model.predict(x=x) + #pred = self._model.predict_on_batch([data_input, labels_num, input_length, label_length]) + return [labels,pred] + + pass + + def RecognizeSpeech_FromFile(self, filename): + ''' + 最终做语音识别用的函数,识别指定文件名的语音 + ''' + + wavsignal,fs = read_wav_data(filename) + return self.RecognizeSpeech(wavsignal, fs) + + pass + + @property + def model(self): + ''' + 返回keras model + ''' + return self._model + + +if(__name__=='__main__'): + datapath = '' + modelpath = 'model_speech' + + + if(not os.path.exists(modelpath)): # 判断保存模型的目录是否存在 + os.makedirs(modelpath) # 如果不存在,就新建一个,避免之后保存模型的时候炸掉 + + system_type = plat.system() # 由于不同的系统的文件路径表示不一样,需要进行判断 + if(system_type == 'Windows'): + datapath = 'E:\\语音数据集' + modelpath = modelpath + '\\' + elif(system_type == 'Linux'): + datapath = 'dataset' + modelpath = modelpath + '/' + else: + print('*[Message] Unknown System\n') + datapath = 'dataset' + modelpath = modelpath + '/' + + ms = ModelSpeech(datapath) + + #ms.LoadModel(modelpath + 'speech_model_e_0_step_1.model') + ms.TrainModel(datapath, epoch = 2, batch_size = 8, save_step = 1) + #ms.TestModel(datapath, str_dataset='dev', data_count = 32) + #r = ms.RecognizeSpeech_FromFile('E:\\语音数据集\\wav\\test\\D4\\D4_750.wav') + #print('*[提示] 语音识别结果:\n',r)