From 7d697290356e813fc91cdc8162212d5d6a7f71eb Mon Sep 17 00:00:00 2001 From: nl8590687 <3210346136@qq.com> Date: Thu, 29 Mar 2018 15:30:50 +0800 Subject: [PATCH] =?UTF-8?q?=E4=B8=80=E4=B8=AA=E6=9A=82=E6=97=B6=E8=83=BD?= =?UTF-8?q?=E8=AE=AD=E7=BB=83=E7=9A=84=E7=89=88=E6=9C=AC=EF=BC=8C=E5=8F=AF?= =?UTF-8?q?=E8=83=BD=E4=BC=9A=E7=82=B8?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- SpeechModel.py | 8 +++++--- readdata.py | 6 +++--- 2 files changed, 8 insertions(+), 6 deletions(-) diff --git a/SpeechModel.py b/SpeechModel.py index da43a22..2ca0947 100644 --- a/SpeechModel.py +++ b/SpeechModel.py @@ -28,6 +28,8 @@ class ModelSpeech(): # 语音模型类 self.MS_OUTPUT_SIZE = MS_OUTPUT_SIZE # 神经网络最终输出的每一个字符向量维度的大小 self.BATCH_SIZE = BATCH_SIZE # 一次训练的batch self.label_max_string_length = 64 + self.AUDIO_LENGTH = 1600 + self.AUDIO_FEATURE_LENGTH = 39 self._model = self.CreateModel() @@ -47,7 +49,7 @@ class ModelSpeech(): # 语音模型类 当前未完成,针对多输出的CTC层尚未实现 ''' # 每一帧使用13维mfcc特征及其13维一阶差分和13维二阶差分表示,最大信号序列长度为1500 - input_data = Input(name='the_input', shape=(1500,39)) + input_data = Input(name='the_input', shape=(self.AUDIO_LENGTH,self.AUDIO_FEATURE_LENGTH)) layer_h1 = Conv1D(256, 5, use_bias=True, padding="valid")(input_data) # 卷积层 layer_h2 = MaxPooling1D(pool_size=2, strides=None, padding="valid")(layer_h1) # 池化层 @@ -77,7 +79,7 @@ class ModelSpeech(): # 语音模型类 loss_out = Lambda(self.ctc_lambda_func, output_shape=(1,), name='ctc')([y_pred, labels, input_length, label_length]) # clipnorm seems to speeds up convergence - sgd = SGD(lr=0.02, decay=1e-6, momentum=0.9, nesterov=True, clipnorm=5) + sgd = SGD(lr=0.002, decay=1e-6, momentum=0.9, nesterov=True, clipnorm=5) model = Model(inputs=[input_data, labels, input_length, label_length], outputs=loss_out) @@ -137,7 +139,7 @@ class ModelSpeech(): # 语音模型类 try: print('[message] epoch %d . Have train datas %d+'%(epoch, n_step*save_step)) # data_genetator是一个生成器函数 - yielddatas = data.data_genetator(self.BATCH_SIZE) + yielddatas = data.data_genetator(self.BATCH_SIZE, self.AUDIO_LENGTH) #self._model.fit_generator(yielddatas, save_step, nb_worker=2) self._model.fit_generator(yielddatas, save_step) n_step += 1 diff --git a/readdata.py b/readdata.py index ce554c5..9455a80 100644 --- a/readdata.py +++ b/readdata.py @@ -108,13 +108,13 @@ class DataSpeech(): data_label = np.array(feat_out) return data_input, data_label - def data_genetator(self, batch_size=32): + def data_genetator(self, batch_size=32, audio_length = 1600): ''' 数据生成器函数,用于Keras的generator_fit训练 batch_size: 一次产生的数据量 需要再修改。。。 ''' - X = np.zeros((batch_size, 1500,39), dtype=np.int16) + X = np.zeros((batch_size, audio_length,39), dtype=np.int16) #y = np.zeros((batch_size, 64, self.SymbolNum), dtype=np.int16) y = np.zeros((batch_size, 64), dtype=np.int16) @@ -123,7 +123,7 @@ class DataSpeech(): labels = [] for i in range(0,batch_size): #input_length.append([1500]) - label_length.append([39]) + label_length.append([30]) labels.append([1])