update daily 20170904

This commit is contained in:
nl8590687 2017-09-04 22:36:11 +08:00
parent 740b65f884
commit 5f73fe0599
2 changed files with 86 additions and 21 deletions

87
main.py
View File

@ -8,8 +8,11 @@ import keras as kr
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten # ,Input,LSTM,Convolution1D,MaxPooling1D,Merge
from keras.layers import Conv1D,LSTM,MaxPooling1D,Merge # Conv2D, MaxPooling2D,Conv1D
from keras.layers import Dense, Dropout, Input # , Flatten,LSTM,Convolution1D,MaxPooling1D,Merge
from keras.layers import Conv1D,LSTM,MaxPooling1D, Lambda #, Merge, Conv2D, MaxPooling2D,Conv1D
from keras import backend as K
from readdata import DataSpeech
class ModelSpeech(): # 语音模型类
def __init__(self,MS_EMBED_SIZE = 64,BATCH_SIZE = 32):
@ -22,24 +25,52 @@ class ModelSpeech(): # 语音模型类
def CreateModel(self):
'''
定义LSTM/CNN模型尚未完成
定义CNN/LSTM/CTC模型使用函数式模型
输入层39维的特征值序列一条语音数据的最大长度设为1500大约15s
隐藏层一1024个神经元的卷积层
隐藏层二池化层池化窗口大小为2
隐藏层三Dropout层需要断开的神经元的比例为0.3防止过拟合
隐藏层四循环层LSTM层
隐藏层五Dropout层需要断开的神经元的比例为0.3防止过拟合
输出层全连接层神经元数量为1279使用softmax作为激活函数使用CTC的loss作为损失函数
'''
_model = Sequential()
_model.add(LSTM(self.MS_EMBED_SIZE, return_sequences=True, input_shape = (200,400))) # input_shape需要修改
_model.add(Dropout(0.3))
_model.add(Conv1D(self.QA_EMBED_SIZE // 2, 5, border_mode="valid"))
_model.add(MaxPooling1D(pool_length=2, border_mode="valid"))
_model.add(Dropout(0.3))
_model.add(Flatten())
# 每一帧使用13维mfcc特征及其13维一阶差分和13维二阶差分表示最大信号序列长度为1500
layer_input = Input((1500,39))
layer_h1 = Conv1D(256, 5, use_bias=True, padding="valid")(layer_input) # 卷积层
layer_h2 = MaxPooling1D(pool_size=2, strides=None, padding="valid")(layer_h1) # 池化层
layer_h3 = Dropout(0.2)(layer_h2) # 随机中断部分神经网络连接,防止过拟合
layer_h4 = LSTM(256, activation='relu', use_bias=True)(layer_h3) # LSTM层
layer_h5 = Dropout(0.2)(layer_h4) # 随机中断部分神经网络连接,防止过拟合
layer_h6 = Dense(1279, activation="softmax")(layer_h5) # 全连接层
#labels = Input(name='the_labels', shape=[60], dtype='float32')
layer_out = Lambda(ctc_lambda_func,output_shape=(1279,), name='ctc')(layer_h6) # CTC
_model = Model(inputs = layer_input, outputs = layer_out)
#_model = Sequential()
#_model.add(Merge([m_lstm, aenc], mode="concat", concat_axis=-1))
_model.add(Dense(1279, activation="softmax"))
_model.compile(optimizer="adam", loss='categorical_crossentropy',metrics=["accuracy"])
#_model.add(Conv1D(256, 5,input_shape=(1500,39), use_bias=True, padding="valid"))
#_model.add(MaxPooling1D(pool_size=2, strides=None, padding="valid"))
#_model.add(Dropout(0.3)) # 随机中断部分神经网络连接
#_model.add(LSTM(256, activation='relu', use_bias=True))
#_model.add(Dropout(0.3)) # 随机中断部分神经网络连接
#_model.add(Dense(1279, activation="softmax"))
##_model.add(Lambda(ctc_lambda_func,output_shape=(1,),name='ctc'))
#_model.compile(optimizer="sgd", loss='categorical_crossentropy',metrics=["accuracy"])
_model.compile(optimizer="sgd", loss='ctc',metrics=["accuracy"])
return _model
def ctc_lambda_func(args):
#labels, y_pred, input_length, label_length = args
y_pred = args
#y_pred = y_pred[:, 2:, :]
return K.ctc_decode(y_pred,1279)
#return K.ctc_batch_cost(labels, y_pred, input_length, label_length)
def TrainModel(self,datapath,epoch = 2,save_step=1000,filename='model_speech/LSTM_CNN_model'):
'''
训练模型
@ -49,9 +80,25 @@ class ModelSpeech(): # 语音模型类
save_step: 每多少步保存一次模型
filename: 默认保存文件名不含文件后缀名
'''
for epoch in range(epoch):
pass
pass
data=DataSpeech(datapath)
data.LoadDataList('train')
num_data=DataSpeech.GetDataNum() # 获取数据的数量
for epoch in range(epoch): # 迭代轮数
n_step = 0 # 迭代数据数
while True:
try:
data_input, data_label = data.GetData(n_step) # 读数据
pass
# 需要写一个生成器函数
self._model.fit_generator(yielddatas, save_step)
n_step += 1
except StopIteration:
print('[error] generator error. please check data format.')
break
self.SaveModel(comment='_e_'+str(epoch)+'_step_'+str(n_step))
def LoadModel(self,filename='model_speech/LSTM_CNN_model.model'):
'''
@ -71,6 +118,14 @@ class ModelSpeech(): # 语音模型类
'''
pass
def Predict(self,x):
'''
预测结果
'''
r = predict_on_batch(x)
return r
pass
@property
def model(self):
'''

View File

@ -93,7 +93,17 @@ class DataSpeech():
v=self.NumToVector(n)
feat_out.append(v)
# 返回值分别是mfcc特征向量的矩阵及其一阶差分和二阶差分矩阵以及对应的拼音符号矩阵
return feat_mfcc,feat_mfcc_d,feat_mfcc_dd,np.array(feat_out)
data_input = np.column_stack((feat_mfcc, feat_mfcc_d, feat_mfcc_dd))
data_label = np.array(feat_out)
return data_input, data_label
def data_genetator(self, data_input, data_label):
'''
数据生成器函数用于Keras的generator_fit训练
输入GetData函数产生的输出
'''
pass
def GetSymbolList(self):
'''
@ -109,7 +119,7 @@ class DataSpeech():
txt_l=i.split('\t')
list_symbol.append(txt_l[0])
txt_obj.close()
list_symbol.append(' ')
list_symbol.append('_')
return list_symbol
def SymbolToNum(self,symbol):