add read words list and signal scale

This commit is contained in:
nl8590687 2017-08-29 00:06:08 +08:00
parent ab74ee4bfc
commit 2217754bf0
7 changed files with 244 additions and 13 deletions

3
.gitignore vendored
View File

@ -1,4 +1,5 @@
## Ignore some files and folders for copyright and other reasons.
*.model
[Mm]odel_speech/
[Mm]odel_speech/
*.wav

View File

@ -25,3 +25,7 @@ LSTM + CNN
基于概率图的马尔可夫模型
## Log
日志
链接:[进展日志](https://github.com/nl8590687/ASRT_SpeechRecognition/blob/master/log.md)

View File

@ -50,14 +50,20 @@ def fbank(signal, samplerate, conf):
Compute fbank features from an audio signal.
从一个声音信号中计算fbank特征向量
Args:
参数
signal: the audio signal from which to compute features. Should be an
N*1 array
要计算特征的声音信号一个N*1维的数组
samplerate: the samplerate of the signal we are working with.
要处理信号的采样率
conf: feature configuration
特征的配置
Returns:
返回值
A numpy array of size (NUMFRAMES by nfilt) containing features, a numpy
vector containing the signal energy
返回一个包含特征向量的numpy数组一个包含信号能量的numpy向量
'''
highfreq = int(conf['highfreq'])

View File

@ -5,6 +5,7 @@ import os
import wave
import numpy as np
import matplotlib.pyplot as plt
import math
def read_wav_data(filename):
'''
@ -20,14 +21,27 @@ def read_wav_data(filename):
wave_data = np.fromstring(str_data, dtype = np.short) # 将声音文件数据转换为数组矩阵形式
wave_data.shape = -1, num_channel # 按照声道数将数组整形,单声道时候是一列数组,双声道时候是两列的矩阵
wave_data = wave_data.T # 将矩阵转置
time = np.arange(0, num_frame) * (1.0/framerate) # 计算声音的播放时间,单位为秒
return wave_data, time
wave_data = wave_data
return wave_data, framerate
def wav_show(wave_data, time): # 显示出来声音波形
#wave_data, time = read_wave_data("C:\\Users\\nl\\Desktop\\A2_0.wav")
#draw the wave
def wav_scale(energy):
'''
语音信号能量归一化
'''
sum=0
for i in energy:
sum=sum+i*i
length=len(energy)
print(length,sum)
m=math.sqrt(length/sum)
e=energy*m
return e
def wav_show(wave_data, fs): # 显示出来声音波形
time = np.arange(0, len(wave_data)) * (1.0/fs) # 计算声音的播放时间,单位为秒
# 画声音波形
#plt.subplot(211)
plt.plot(time, wave_data[0])
plt.plot(time, wave_data)
#plt.subplot(212)
#plt.plot(time, wave_data[1], c = "g")
plt.show()
@ -53,11 +67,24 @@ def get_wav_symbol(filename):
读取指定数据集中所有wav文件对应的语音符号
返回一个存储符号集的字典类型值
'''
print('test')
#if(__name__=='__main__'):
txt_obj=open(filename,'r') # 打开文件并读入
txt_text=txt_obj.read()
txt_lines=txt_text.split('\n') # 文本分割
dic_symbol_list={} # 初始化字典
for i in txt_lines:
if(i!=''):
txt_l=i.split(' ')
dic_symbol_list[txt_l[0]]=txt_l[1:]
return dic_symbol_list
if(__name__=='__main__'):
#dic=get_wav_symbol('E:\\语音数据集\\doc\\doc\\trans\\train.phone.txt')
#print(dic)
#dic=get_wav_list('E:\\语音数据集\\doc\\doc\\list\\train.wav.lst')
#for i in dic:
#print(i,dic[i])
#wave_data, time = read_wav_data("C:\\Users\\nl\\Desktop\\A2_0.wav")
#wav_show(wave_data,time)
wave_data, fs = read_wav_data("A2_0.wav")
wave_data[0]=wav_scale(wave_data[0])
#print(fs)
wav_show(wave_data[0],fs)

191
general_function/sigproc.py Normal file
View File

@ -0,0 +1,191 @@
'''@file sigproc.py
contains the signal processing functionality
The MIT License (MIT)
Copyright (c) 2013 James Lyons
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
This file includes routines for basic signal processing including framing and
computing power spectra.
Author: James Lyons 2012
'''
import math
import numpy
def framesig(sig, frame_len, frame_step, winfunc=lambda x: numpy.ones((x, ))):
'''
Frame a signal into overlapping frames.
Args:
sig: the audio signal to frame.
frame_len: length of each frame measured in samples.
frame_step: number of samples after the start of the previous frame that
the next frame should begin.
winfunc: the analysis window to apply to each frame. By default no
window is applied.
Returns:
an array of frames. Size is NUMFRAMES by frame_len.
'''
slen = len(sig)
frame_len = int(round(frame_len))
frame_step = int(round(frame_step))
if slen <= frame_len:
numframes = 1
else:
numframes = 1 + int(math.ceil((1.0*slen - frame_len)/frame_step))
padlen = int((numframes-1)*frame_step + frame_len)
zeros = numpy.zeros((padlen - slen,))
padsignal = numpy.concatenate((sig, zeros))
indices = (numpy.tile(numpy.arange(0, frame_len), (numframes, 1))
+ numpy.tile(numpy.arange(0, numframes*frame_step, frame_step),
(frame_len, 1)).T)
indices = numpy.array(indices, dtype=numpy.int32)
frames = padsignal[indices]
win = numpy.tile(winfunc(frame_len), (numframes, 1))
return frames*win
def deframesig(frames, siglen, frame_len, frame_step,
winfunc=lambda x: numpy.ones((x, ))):
'''
Does overlap-add procedure to undo the action of framesig.
Args:
frames the: array of frames.
siglen the: length of the desired signal, use 0 if unknown. Output will
be truncated to siglen samples.
frame_len: length of each frame measured in samples.
frame_step: number of samples after the start of the previous frame that
the next frame should begin.
winfunc: the analysis window to apply to each frame. By default no
window is applied.
Returns:
a 1-D signal.
'''
frame_len = round(frame_len)
frame_step = round(frame_step)
numframes = numpy.shape(frames)[0]
assert numpy.shape(frames)[1] == frame_len, '''"frames" matrix is wrong
size, 2nd dim is not equal to frame_len'''
indices = (numpy.tile(numpy.arange(0, frame_len), (numframes, 1))
+ numpy.tile(numpy.arange(0, numframes*frame_step, frame_step),
(frame_len, 1)).T)
indices = numpy.array(indices, dtype=numpy.int32)
padlen = (numframes-1)*frame_step + frame_len
if siglen <= 0:
siglen = padlen
rec_signal = numpy.zeros((padlen, ))
window_correction = numpy.zeros((padlen, ))
win = winfunc(frame_len)
for i in range(0, numframes):
#add a little bit so it is never zero
window_correction[indices[i, :]] = (window_correction[indices[i, :]]
+ win + 1e-15)
rec_signal[indices[i, :]] = rec_signal[indices[i, :]] + frames[i, :]
rec_signal = rec_signal/window_correction
return rec_signal[0:siglen]
def magspec(frames, nfft):
'''
Compute the magnitude spectrum of each frame in frames.
If frames is an NxD matrix, output will be NxNFFT.
Args:
frames: the array of frames. Each row is a frame.
nfft: the FFT length to use. If NFFT > frame_len, the frames are
zero-padded.
Returns:
If frames is an NxD matrix, output will be NxNFFT. Each row will be the
magnitude spectrum of the corresponding frame.
'''
complex_spec = numpy.fft.rfft(frames, nfft)
return numpy.absolute(complex_spec)
def powspec(frames, nfft):
'''
Compute the power spectrum of each frame in frames.
If frames is an NxD matrix, output will be NxNFFT.
Args:
frames: the array of frames. Each row is a frame.
nfft: the FFT length to use. If NFFT > frame_len, the frames are
zero-padded.
Returns:
If frames is an NxD matrix, output will be NxNFFT. Each row will be the
power spectrum of the corresponding frame.
'''
return 1.0/nfft * numpy.square(magspec(frames, nfft))
def logpowspec(frames, nfft, norm=1):
'''
Compute the log power spectrum of each frame in frames.
If frames is an NxD matrix, output will be NxNFFT.
Args:
frames: the array of frames. Each row is a frame.
nfft: the FFT length to use. If NFFT > frame_len, the frames are
zero-padded.
norm: If norm=1, the log power spectrum is normalised so that the max
value (across all frames) is 1.
Returns:
If frames is an NxD matrix, output will be NxNFFT. Each row will be the
log power spectrum of the corresponding frame.
'''
ps = powspec(frames, nfft)
ps[ps <= 1e-30] = 1e-30
lps = 10*numpy.log10(ps)
if norm:
return lps - numpy.max(lps)
else:
return lps
def preemphasis(signal, coeff=0.95):
'''
perform preemphasis on the input signal.
Args:
signal: The signal to filter.
coeff: The preemphasis coefficient. 0 is no filter, default is 0.95.
Returns:
the filtered signal.
'''
return numpy.append(signal[0], signal[1:]-coeff*signal[:-1])

2
log.md
View File

@ -8,5 +8,7 @@
如果有什么问题,团队内部需要在这里直接写出来
## Log
### 2017-08-28
开始准备制作语音信号处理方面的功能
### 2017-08-22
准备使用Keras基于LSTM/CNN尝试实现

View File

@ -36,7 +36,7 @@ class ModelSpeech(): # 语音模型类
return _model
def TrainModel(self,datas,epoch = 2,save_step=5000,filename='model_speech/LSTM_CNN_model'): # 训练模型
print('test')
pass
def LoadModel(self,filename='model_speech/LSTM_CNN_model'): # 加载模型参数
self._model.load_weights(filename)
@ -45,7 +45,7 @@ class ModelSpeech(): # 语音模型类
self._model.save_weights(filename+'.model')
def TestModel(self): # 测试检验模型效果
print('test')
pass
@property
def model(self): # 返回keras model