ASRT_SpeechRecognition/readdata3.py

300 lines
8.8 KiB
Python
Raw Normal View History

2018-04-07 14:47:40 +08:00
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import platform as plat
import numpy as np
from general_function.file_wav import *
from python_speech_features import mfcc
from python_speech_features import delta
from python_speech_features import logfbank
import random
#import scipy.io.wavfile as wav
from scipy.fftpack import fft
import matplotlib.pyplot as plt
class DataSpeech():
def __init__(self,path):
'''
初始化
参数
path数据存放位置根目录
'''
system_type = plat.system() # 由于不同的系统的文件路径表示不一样,需要进行判断
self.datapath = path; # 数据存放位置根目录
self.slash = ''
if(system_type == 'Windows'):
self.slash='\\' # 反斜杠
elif(system_type == 'Linux'):
self.slash='/' # 正斜杠
else:
print('*[Message] Unknown System\n')
self.slash='/' # 正斜杠
if(self.slash != self.datapath[-1]): # 在目录路径末尾增加斜杠
self.datapath = self.datapath + self.slash
self.dic_wavlist = {}
self.dic_symbollist = {}
self.SymbolNum = 0 # 记录拼音符号数量
self.list_symbol = self.GetSymbolList() # 全部汉语拼音符号列表
self.list_wavnum = [] # wav文件标记列表
self.list_symbolnum = [] # symbol标记列表
self.DataNum = 0 # 记录数据量
pass
def LoadDataList(self,type):
'''
加载用于计算的数据列表
参数
type选取的数据集类型
train 训练集
dev 开发集
test 测试集
'''
# 设定选取哪一项作为要使用的数据集
if(type=='train'):
filename_wavlist = 'doc' + self.slash + 'list' + self.slash + 'train.wav.lst'
filename_symbollist = 'doc' + self.slash + 'trans' + self.slash + 'train.syllable.txt'
elif(type=='dev'):
filename_wavlist = 'doc' + self.slash + 'list' + self.slash + 'cv.wav.lst'
filename_symbollist = 'doc' + self.slash + 'trans' + self.slash + 'cv.syllable.txt'
elif(type=='test'):
filename_wavlist = 'doc' + self.slash + 'list' + self.slash + 'test.wav.lst'
filename_symbollist = 'doc' + self.slash + 'trans' + self.slash + 'test.syllable.txt'
else:
filename_wavlist = '' # 默认留空
filename_symbollist = ''
# 读取数据列表wav文件列表和其对应的符号列表
self.dic_wavlist,self.list_wavnum = get_wav_list(self.datapath + filename_wavlist)
self.dic_symbollist,self.list_symbolnum = get_wav_symbol(self.datapath + filename_symbollist)
self.DataNum = self.GetDataNum()
def GetDataNum(self):
'''
获取数据的数量
当wav数量和symbol数量一致的时候返回正确的值否则返回-1代表出错
'''
if(len(self.dic_wavlist) == len(self.dic_symbollist)):
DataNum = len(self.dic_wavlist)
else:
DataNum = -1
return DataNum
def GetMfccFeature(self, wavsignal, fs):
# 获取输入特征
feat_mfcc=mfcc(wavsignal[0],fs)
feat_mfcc_d=delta(feat_mfcc,2)
feat_mfcc_dd=delta(feat_mfcc_d,2)
# 返回值分别是mfcc特征向量的矩阵及其一阶差分和二阶差分矩阵
wav_feature = np.column_stack((feat_mfcc, feat_mfcc_d, feat_mfcc_dd))
return wav_feature
def GetFrequencyFeature(self, wavsignal, fs):
# wav波形 加时间窗以及时移10ms
time_window = 25 # 单位ms
data_input = []
#print(int(len(wavsignal[0])/fs*1000 - time_window) // 10)
for i in range(0,int(len(wavsignal[0])/fs*1000 - time_window) // 10 ):
p_start = i * 160
p_end = p_start + 400
data_line = []
for j in range(p_start, p_end):
data_line.append(wavsignal[0][j])
#print('wavsignal[0][j]:\n',wavsignal[0][j])
data_line = abs(fft(data_line)) / len(wavsignal[0])
#data_line = abs(fft(data_line))
data_input.append(data_line[0:len(data_line)//2])
#print('data_line:\n',data_line)
return data_input
def GetData(self,n_start,n_amount=1):
'''
读取数据返回神经网络输入值和输出值矩阵(可直接用于神经网络训练的那种)
参数
n_start从编号为n_start数据开始选取数据
n_amount选取的数据数量默认为1即一次一个wav文件
返回
三个包含wav特征矩阵的神经网络输入值和一个标定的类别矩阵神经网络输出值
'''
# 读取一个文件
filename = self.dic_wavlist[self.list_wavnum[n_start]]
if('Windows' == plat.system()):
filename=filename.replace('/','\\') # windows系统下需要执行这一行对文件路径做特别处理
wavsignal,fs = read_wav_data(self.datapath+filename)
#print(wavsignal, fs)
#print(max(wavsignal[0]))
#wavsignal[0] = np.array(wavsignal[0], dtype=np.float32)
#wavsignal[0]=wavsignal[0].reshape(wavsignal[0].shape[0])
#print('wavsignal[0]:\n',wavsignal[0][1])
# 归一化
#wavsignal[0] = wav_scale(wavsignal[0])
#print('wavsignal[0]:\n {:.4f}'.format(wavsignal[0][1]))
#print('长度:',len(wavsignal[0]))
#print(max(wavsignal[0]))
#print(sum(abs(wavsignal[0]))/len(wavsignal[0]))
data_input = self.GetFrequencyFeature(wavsignal, fs)
#print('data_input:\n', data_input)
#data_input = self.GetMfccFeature(wavsignal, fs)
# 获取输出特征
list_symbol=self.dic_symbollist[self.list_symbolnum[n_start]]
feat_out=[]
#print("数据编号",n_start,filename)
for i in list_symbol:
if(''!=i):
n=self.SymbolToNum(i)
#v=self.NumToVector(n)
#feat_out.append(v)
feat_out.append(n)
#print('feat_out:',feat_out)
# 获得对应的拼音符号向量
#arr_zero = np.zeros((1, 39), dtype=np.int16) #一个全是0的行向量
#while(len(data_input)<1600): #长度不够时补全到1600
# data_input = np.row_stack((data_input,arr_zero))
#data_input = data_input.T
data_input = np.array(data_input)
data_label = np.array(feat_out)
return data_input, data_label
def data_genetator(self, batch_size=32, audio_length = 1600):
'''
数据生成器函数用于Keras的generator_fit训练
batch_size: 一次产生的数据量
需要再修改
'''
X = np.zeros((batch_size, audio_length, 200), dtype=np.float)
#y = np.zeros((batch_size, 64, self.SymbolNum), dtype=np.int16)
y = np.zeros((batch_size, 64), dtype=np.int16)
label_length = []
labels = []
for i in range(0,batch_size):
#input_length.append([1500])
labels.append([1e-12]) # 最终的ctc loss结果0代表着没有ctc上的loss
#labels = np.matrix(labels)
labels = np.array(labels, dtype = np.float)
#print(input_length,len(input_length))
while True:
#generator = ImageCaptcha(width=width, height=height)
input_length = []
ran_num = random.randint(0,self.DataNum - 1) # 获取一个随机数
for i in range(batch_size):
data_input, data_labels = self.GetData((ran_num + i) % self.DataNum) # 从随机数开始连续向后取一定数量数据
#data_input, data_labels = self.GetData(1 % self.DataNum) # 从随机数开始连续向后取一定数量数据
#input_length.append(data_input.shape[1] // 4 - 2)
#print(data_input.shape[0],len(data_input))
input_length.append(data_input.shape[0] // 4 - 3)
#print(data_input, data_labels)
#print('data_input长度:',len(data_input))
X[i,0:len(data_input)] = data_input
#print('data_labels长度:',len(data_labels))
#print(data_labels)
y[i,0:len(data_labels)] = data_labels
#print(i,y[i].shape)
#y[i] = y[i].T
#print(i,y[i].shape)
label_length.append([len(data_labels)])
label_length = np.array(label_length)
input_length = np.array(input_length).T
yield [X, input_length], y
pass
def GetSymbolList(self):
'''
加载拼音符号列表用于标记符号
返回一个列表list类型变量
'''
txt_obj=open(self.datapath+'dict.txt','r',encoding='UTF-8') # 打开文件并读入
txt_text=txt_obj.read()
txt_lines=txt_text.split('\n') # 文本分割
list_symbol=[] # 初始化符号列表
for i in txt_lines:
if(i!=''):
txt_l=i.split('\t')
list_symbol.append(txt_l[0])
txt_obj.close()
list_symbol.append('_')
self.SymbolNum = len(list_symbol)
return list_symbol
def GetSymbolNum(self):
'''
获取拼音符号数量
'''
return len(self.list_symbol)
def SymbolToNum(self,symbol):
'''
符号转为数字
'''
if(symbol != ''):
return self.list_symbol.index(symbol)
return self.SymbolNum
def NumToVector(self,num):
'''
数字转为对应的向量
'''
v_tmp=[]
for i in range(0,len(self.list_symbol)):
if(i==num):
v_tmp.append(1)
else:
v_tmp.append(0)
v=np.array(v_tmp)
return v
if(__name__=='__main__'):
#path='E:\\语音数据集'
#l=DataSpeech(path)
#l.LoadDataList('train')
#print(l.GetDataNum())
#data0=l.GetData(0)
#print(data0)
#data0=data0[0].reshape(data0[0].shape[0],data0[0].shape[1])
#print(data0, data0 is list)
#plt.subplot(111)
#plt.imshow(data0.T, cmap=plt.get_cmap('Blues_r'))
#plt.show()
#aa=l.data_genetator()
#for i in aa:
#a,b=i
#print(a,b)
pass