package tview import ( "math" "strings" "sync" "github.com/gdamore/tcell/v2" colorful "github.com/lucasb-eyer/go-colorful" ) // TabSize is the number of spaces with which a tab character will be replaced. var TabSize = 4 // textViewLine contains information about a line displayed in the text view. type textViewLine struct { offset int // The string position in the buffer where this line starts. width int // The screen width of this line. length int // The string length (in bytes) of this line. state *stepState // The parser state at the beginning of the line, before parsing the first character. regions map[string][2]int // The start and end columns of all regions in this line. Only valid for visible lines. May be nil. } // TextViewWriter is a writer that can be used to write to and clear a TextView // in batches, i.e. multiple writes with the lock only being acquired once. Don't // instantiated this class directly but use the TextView's BatchWriter method // instead. type TextViewWriter struct { t *TextView } // Close implements io.Closer for the writer by unlocking the original TextView. func (w TextViewWriter) Close() error { w.t.Unlock() return nil } // Clear removes all text from the buffer. func (w TextViewWriter) Clear() { w.t.clear() } // Write implements the io.Writer interface. It behaves like the TextView's // Write() method except that it does not acquire the lock. func (w TextViewWriter) Write(p []byte) (n int, err error) { return w.t.write(p) } // HasFocus returns whether the underlying TextView has focus. func (w TextViewWriter) HasFocus() bool { return w.t.hasFocus } // TextView is a component to display read-only text. While the text to be // displayed can be changed or appended to, there is no functionality that // allows the user to edit it. For that, [TextArea] should be used. // // TextView implements the io.Writer interface so you can stream text to it, // appending to the existing text. This does not trigger a redraw automatically // but if a handler is installed via [TextView.SetChangedFunc], you can cause it // to be redrawn. (See [TextView.SetChangedFunc] for more details.) // // Tab characters advance the text to the next tab stop at every [TabSize] // screen columns, but only if the text is left-aligned. If the text is centered // or right-aligned, tab characters are simply replaced with [TabSize] spaces. // // Word wrapping is enabled by default. Use [TextView.SetWrap] and // [TextView.SetWordWrap] to change this. // // # Navigation // // If the text view is set to be scrollable (which is the default), text is kept // in a buffer which may be larger than the screen and can be navigated // with Vim-like key binds: // // - h, left arrow: Move left. // - l, right arrow: Move right. // - j, down arrow: Move down. // - k, up arrow: Move up. // - g, home: Move to the top. // - G, end: Move to the bottom. // - Ctrl-F, page down: Move down by one page. // - Ctrl-B, page up: Move up by one page. // // If the text is not scrollable, any text above the top visible line is // discarded. This can be useful when you want to continuously stream text to // the text view and only keep the latest lines. // // Use [Box.SetInputCapture] to override or modify keyboard input. // // # Styles / Colors // // If dynamic colors are enabled via [TextView.SetDynamicColors], text style can // be changed dynamically by embedding color strings in square brackets. This // works the same way as anywhere else. See the package documentation for more // information. // // # Regions and Highlights // // If regions are enabled via [TextView.SetRegions], you can define text regions // within the text and assign region IDs to them. Text regions start with region // tags. Region tags are square brackets that contain a region ID in double // quotes, for example: // // We define a ["rg"]region[""] here. // // A text region ends with the next region tag. Tags with no region ID ([""]) // don't start new regions. They can therefore be used to mark the end of a // region. Region IDs must satisfy the following regular expression: // // [a-zA-Z0-9_,;: \-\.]+ // // Regions can be highlighted by calling the [TextView.Highlight] function with // one or more region IDs. This can be used to display search results, for // example. // // The [TextView.ScrollToHighlight] function can be used to jump to the // currently highlighted region once when the text view is drawn the next time. // // # Large Texts // // The text view can handle reasonably large texts. It will parse the text as // needed. For optimal performance, it is best to access or display parts of the // text very far down only if really needed. For example, call // [TextView.ScrollToBeginning] before adding the text to the text view, to // avoid scrolling the text all the way to the bottom, forcing a full-text // parse. // // For even larger texts or "infinite" streams of text such as log files, you // should consider using [TextView.SetMaxLines] to limit the number of lines in // the text view buffer. Or disable the text view's scrollability altogether // (using [TextView.SetScrollable]). This will cause the text view to discard // lines moving out of the visible area at the top. // // See https://github.com/rivo/tview/wiki/TextView for an example. type TextView struct { sync.Mutex *Box // The size of the text area. If set to 0, the text view will use the entire // available space. width, height int // The text buffer. text strings.Builder // The line index. It is valid at any time but may not contain trailing // lines which are not visible. lineIndex []*textViewLine // The screen width of the longest line in the index. longestLine int // Regions mapped by their ID to the line where they start. Regions which // cannot be found in [TextView.lineIndex] are not contained. regions map[string]int // The label text shown, usually when part of a form. label string // The width of the text area's label. labelWidth int // The label style. labelStyle tcell.Style // The text alignment, one of AlignLeft, AlignCenter, or AlignRight. align int // Currently highlighted regions. highlights map[string]struct{} // The last width for which the current text view was drawn. lastWidth int // The height of the content the last time the text view was drawn. pageSize int // The index of the first line shown in the text view. lineOffset int // If set to true, the text view will always remain at the end of the // content when text is added. trackEnd bool // The width of the characters to be skipped on each line (not used in wrap // mode). columnOffset int // The maximum number of lines kept in the line index, effectively the // latest word-wrapped lines. Ignored if 0. maxLines int // If set to true, the text view will keep a buffer of text which can be // navigated when the text is longer than what fits into the box. scrollable bool // If set to true, lines that are longer than the available width are // wrapped onto the next line. If set to false, any characters beyond the // available width are discarded. wrap bool // If set to true and if wrap is also true, Unicode line breaking is // applied. wordWrap bool // The (starting) style of the text. This also defines the background color // of the main text element. textStyle tcell.Style // Whether or not style tags are used. styleTags bool // Whether or not region tags are used. regionTags bool // A temporary flag which, when true, will automatically bring the current // highlight(s) into the visible screen the next time the text view is // drawn. scrollToHighlights bool // If true, setting new highlights will be a XOR instead of an overwrite // operation. toggleHighlights bool // An optional function which is called when the content of the text view // has changed. changed func() // An optional function which is called when the user presses one of the // following keys: Escape, Enter, Tab, Backtab. done func(tcell.Key) // An optional function which is called when one or more regions were // highlighted. highlighted func(added, removed, remaining []string) // A callback function set by the Form class and called when the user leaves // this form item. finished func(tcell.Key) } // NewTextView returns a new text view. func NewTextView() *TextView { return &TextView{ Box: NewBox(), labelStyle: tcell.StyleDefault.Foreground(Styles.SecondaryTextColor), highlights: make(map[string]struct{}), lineOffset: -1, scrollable: true, align: AlignLeft, wrap: true, wordWrap: true, textStyle: tcell.StyleDefault.Background(Styles.PrimitiveBackgroundColor).Foreground(Styles.PrimaryTextColor), regionTags: false, styleTags: false, } } // SetLabel sets the text to be displayed before the text view. func (t *TextView) SetLabel(label string) *TextView { t.label = label return t } // GetLabel returns the text to be displayed before the text view. func (t *TextView) GetLabel() string { return t.label } // SetLabelWidth sets the screen width of the label. A value of 0 will cause the // primitive to use the width of the label string. func (t *TextView) SetLabelWidth(width int) *TextView { t.labelWidth = width return t } // SetSize sets the screen size of the main text element of the text view. This // element is always located next to the label which is always located in the // top left corner. If any of the values are 0 or larger than the available // space, the available space will be used. func (t *TextView) SetSize(rows, columns int) *TextView { t.width = columns t.height = rows return t } // GetFieldWidth returns this primitive's field width. func (t *TextView) GetFieldWidth() int { return t.width } // GetFieldHeight returns this primitive's field height. func (t *TextView) GetFieldHeight() int { return t.height } // SetDisabled sets whether or not the item is disabled / read-only. func (t *TextView) SetDisabled(disabled bool) FormItem { return t // Text views are always read-only. } // SetScrollable sets the flag that decides whether or not the text view is // scrollable. If false, text that moves above the text view's top row will be // permanently deleted. func (t *TextView) SetScrollable(scrollable bool) *TextView { t.scrollable = scrollable if !scrollable { t.trackEnd = true } return t } // SetWrap sets the flag that, if true, leads to lines that are longer than the // available width being wrapped onto the next line. If false, any characters // beyond the available width are not displayed. func (t *TextView) SetWrap(wrap bool) *TextView { if t.wrap != wrap { t.resetIndex() // This invalidates the entire index. } t.wrap = wrap return t } // SetWordWrap sets the flag that, if true and if the "wrap" flag is also true // (see [TextView.SetWrap]), wraps according to [Unicode Standard Annex #14]. // // This flag is ignored if the "wrap" flag is false. func (t *TextView) SetWordWrap(wrapOnWords bool) *TextView { if t.wrap && t.wordWrap != wrapOnWords { t.resetIndex() // This invalidates the entire index. } t.wordWrap = wrapOnWords return t } // SetMaxLines sets the maximum number of lines for this text view. Lines at the // beginning of the text will be discarded when the text view is drawn, so as to // remain below this value. Only lines above the first visible line are removed. // // Broken-over lines via word/character wrapping are counted individually. // // Note that [TextView.GetText] will return the shortened text. // // A value of 0 (the default) will keep all lines in place. func (t *TextView) SetMaxLines(maxLines int) *TextView { t.maxLines = maxLines return t } // SetTextAlign sets the text alignment within the text view. This must be // either AlignLeft, AlignCenter, or AlignRight. func (t *TextView) SetTextAlign(align int) *TextView { t.align = align return t } // SetTextColor sets the initial color of the text. func (t *TextView) SetTextColor(color tcell.Color) *TextView { t.textStyle = t.textStyle.Foreground(color) t.resetIndex() return t } // SetBackgroundColor overrides its implementation in Box to set the background // color of this primitive. For backwards compatibility reasons, it also sets // the background color of the main text element. func (t *TextView) SetBackgroundColor(color tcell.Color) *Box { t.Box.SetBackgroundColor(color) t.textStyle = t.textStyle.Background(color) t.resetIndex() return t.Box } // SetTextStyle sets the initial style of the text. This style's background // color also determines the background color of the main text element. func (t *TextView) SetTextStyle(style tcell.Style) *TextView { t.textStyle = style t.resetIndex() return t } // SetText sets the text of this text view to the provided string. Previously // contained text will be removed. As with writing to the text view io.Writer // interface directly, this does not trigger an automatic redraw but it will // trigger the "changed" callback if one is set. func (t *TextView) SetText(text string) *TextView { t.Lock() defer t.Unlock() t.text.Reset() t.text.WriteString(text) t.resetIndex() if t.changed != nil { go t.changed() } return t } // GetText returns the current text of this text view. If "stripAllTags" is set // to true, any region/style tags are stripped from the text. func (t *TextView) GetText(stripAllTags bool) string { if !stripAllTags || (!t.styleTags && !t.regionTags) { return t.text.String() } var ( str strings.Builder state *stepState text = t.text.String() opts stepOptions ch string ) if t.styleTags { opts = stepOptionsStyle } if t.regionTags { opts |= stepOptionsRegion } for len(text) > 0 { ch, text, state = step(text, state, opts) str.WriteString(ch) } return str.String() } // GetOriginalLineCount returns the number of lines in the original text buffer, // without applying any wrapping. This is an expensive call as it needs to // iterate over the entire text. func (t *TextView) GetOriginalLineCount() int { if t.text.Len() == 0 { return 0 } var ( state *stepState str = t.text.String() lines int = 1 ) for len(str) > 0 { _, str, state = step(str, state, stepOptionsNone) if lineBreak, optional := state.LineBreak(); lineBreak && !optional { lines++ } } return lines } // SetDynamicColors sets the flag that allows the text color to be changed // dynamically with style tags. See class description for details. func (t *TextView) SetDynamicColors(dynamic bool) *TextView { if t.styleTags != dynamic { t.resetIndex() // This invalidates the entire index. } t.styleTags = dynamic return t } // SetRegions sets the flag that allows to define regions in the text. See class // description for details. func (t *TextView) SetRegions(regions bool) *TextView { if t.regionTags != regions { t.resetIndex() // This invalidates the entire index. } t.regionTags = regions return t } // SetChangedFunc sets a handler function which is called when the text of the // text view has changed. This is useful when text is written to this // [io.Writer] in a separate goroutine. Doing so does not automatically cause // the screen to be refreshed so you may want to use the "changed" handler to // redraw the screen. // // Note that to avoid race conditions or deadlocks, there are a few rules you // should follow: // // - You can call [Application.Draw] from this handler. // - You can call [TextView.HasFocus] from this handler. // - During the execution of this handler, access to any other variables from // this primitive or any other primitive must be queued using // [Application.QueueUpdate]. // // See package description for details on dealing with concurrency. func (t *TextView) SetChangedFunc(handler func()) *TextView { t.changed = handler return t } // SetDoneFunc sets a handler which is called when the user presses on the // following keys: Escape, Enter, Tab, Backtab. The key is passed to the // handler. func (t *TextView) SetDoneFunc(handler func(key tcell.Key)) *TextView { t.done = handler return t } // SetHighlightedFunc sets a handler which is called when the list of currently // highlighted regions change. It receives a list of region IDs which were newly // highlighted, those that are not highlighted anymore, and those that remain // highlighted. // // Note that because regions are only determined when drawing the text view, // this function can only fire for regions that have existed when the text view // was last drawn. func (t *TextView) SetHighlightedFunc(handler func(added, removed, remaining []string)) *TextView { t.highlighted = handler return t } // SetFinishedFunc sets a callback invoked when the user leaves this form item. func (t *TextView) SetFinishedFunc(handler func(key tcell.Key)) FormItem { t.finished = handler return t } // SetFormAttributes sets attributes shared by all form items. func (t *TextView) SetFormAttributes(labelWidth int, labelColor, bgColor, fieldTextColor, fieldBgColor tcell.Color) FormItem { t.labelWidth = labelWidth t.backgroundColor = bgColor t.labelStyle = t.labelStyle.Foreground(labelColor) // We ignore the field background color because this is a read-only element. t.textStyle = tcell.StyleDefault.Foreground(fieldTextColor).Background(bgColor) return t } // ScrollTo scrolls to the specified row and column (both starting with 0). func (t *TextView) ScrollTo(row, column int) *TextView { if !t.scrollable { return t } t.lineOffset = row t.columnOffset = column t.trackEnd = false return t } // ScrollToBeginning scrolls to the top left corner of the text if the text view // is scrollable. func (t *TextView) ScrollToBeginning() *TextView { if !t.scrollable { return t } t.trackEnd = false t.lineOffset = 0 t.columnOffset = 0 return t } // ScrollToEnd scrolls to the bottom left corner of the text if the text view // is scrollable. Adding new rows to the end of the text view will cause it to // scroll with the new data. func (t *TextView) ScrollToEnd() *TextView { if !t.scrollable { return t } t.trackEnd = true t.columnOffset = 0 return t } // GetScrollOffset returns the number of rows and columns that are skipped at // the top left corner when the text view has been scrolled. func (t *TextView) GetScrollOffset() (row, column int) { return t.lineOffset, t.columnOffset } // Clear removes all text from the buffer. This triggers the "changed" callback. func (t *TextView) Clear() *TextView { t.Lock() defer t.Unlock() t.clear() if t.changed != nil { go t.changed() } return t } // clear is the internal implementation of clear. It is used by TextViewWriter // and anywhere that we need to perform a write without locking the buffer. func (t *TextView) clear() { t.text.Reset() t.resetIndex() } // Highlight specifies which regions should be highlighted. If highlight // toggling is set to true (see [TextView.SetToggleHighlights]), the highlight // of the provided regions is toggled (i.e. highlighted regions are // un-highlighted and vice versa). If toggling is set to false, the provided // regions are highlighted and all other regions will not be highlighted (you // may also provide nil to turn off all highlights). // // For more information on regions, see class description. Empty region strings // or regions not contained in the text are ignored. // // Text in highlighted regions will be drawn inverted, i.e. with their // background and foreground colors swapped. // // If toggling is set to false, clicking outside of any region will remove all // highlights. // // This function is expensive if a specified region is in a part of the text // that has not yet been parsed. func (t *TextView) Highlight(regionIDs ...string) *TextView { // Make sure we know these regions. t.parseAhead(t.lastWidth, func(lineNumber int, line *textViewLine) bool { for _, regionID := range regionIDs { if _, ok := t.regions[regionID]; !ok { return false } } return true }) // Remove unknown regions. newRegions := make([]string, 0, len(regionIDs)) for _, regionID := range regionIDs { if _, ok := t.regions[regionID]; ok { newRegions = append(newRegions, regionID) } } regionIDs = newRegions // Toggle highlights. if t.toggleHighlights { var newIDs []string HighlightLoop: for regionID := range t.highlights { for _, id := range regionIDs { if regionID == id { continue HighlightLoop } } newIDs = append(newIDs, regionID) } for _, regionID := range regionIDs { if _, ok := t.highlights[regionID]; !ok { newIDs = append(newIDs, regionID) } } regionIDs = newIDs } // Now we have a list of region IDs that end up being highlighted. // Determine added and removed regions. var added, removed, remaining []string if t.highlighted != nil { for _, regionID := range regionIDs { if _, ok := t.highlights[regionID]; ok { remaining = append(remaining, regionID) delete(t.highlights, regionID) } else { added = append(added, regionID) } } for regionID := range t.highlights { removed = append(removed, regionID) } } // Make new selection. t.highlights = make(map[string]struct{}) for _, id := range regionIDs { if id == "" { continue } t.highlights[id] = struct{}{} } // Notify. if t.highlighted != nil && (len(added) > 0 || len(removed) > 0) { t.highlighted(added, removed, remaining) } return t } // GetHighlights returns the IDs of all currently highlighted regions. func (t *TextView) GetHighlights() (regionIDs []string) { for id := range t.highlights { regionIDs = append(regionIDs, id) } return } // SetToggleHighlights sets a flag to determine how regions are highlighted. // When set to true, the [TextView.Highlight] function (or a mouse click) will // toggle the provided/selected regions. When set to false, [TextView.Highlight] // (or a mouse click) will simply highlight the provided regions. func (t *TextView) SetToggleHighlights(toggle bool) *TextView { t.toggleHighlights = toggle return t } // ScrollToHighlight will cause the visible area to be scrolled so that the // highlighted regions appear in the visible area of the text view. This // repositioning happens the next time the text view is drawn. It happens only // once so you will need to call this function repeatedly to always keep // highlighted regions in view. // // Nothing happens if there are no highlighted regions or if the text view is // not scrollable. func (t *TextView) ScrollToHighlight() *TextView { if len(t.highlights) == 0 || !t.scrollable || !t.regionTags { return t } t.scrollToHighlights = true t.trackEnd = false return t } // GetRegionText returns the text of the first region with the given ID. If // dynamic colors are enabled, style tags are stripped from the text. // // If the region does not exist or if regions are turned off, an empty string // is returned. // // This function can be expensive if the specified region is way beyond the // visible area of the text view as the text needs to be parsed until the region // can be found, or if the region does not contain any text. func (t *TextView) GetRegionText(regionID string) string { if !t.regionTags || regionID == "" { return "" } // Parse until we find the region. lineNumber, ok := t.regions[regionID] if !ok { lineNumber = -1 t.parseAhead(t.lastWidth, func(number int, line *textViewLine) bool { lineNumber, ok = t.regions[regionID] return ok }) if lineNumber < 0 { return "" // We couldn't find this region. } } // Extract text from region. var ( line = t.lineIndex[lineNumber] text = t.text.String()[line.offset:] st = *line.state state = &st options = stepOptionsRegion regionText strings.Builder ) if t.styleTags { options |= stepOptionsStyle } for len(text) > 0 { var ch string ch, text, state = step(text, state, options) if state.region == regionID { regionText.WriteString(ch) } else if regionText.Len() > 0 { break } } return regionText.String() } // Focus is called when this primitive receives focus. func (t *TextView) Focus(delegate func(p Primitive)) { // Implemented here with locking because this is used by layout primitives. t.Lock() defer t.Unlock() // But if we're part of a form and not scrollable, there's nothing the user // can do here so we're finished. if t.finished != nil && !t.scrollable { t.finished(-1) return } t.Box.Focus(delegate) } // HasFocus returns whether or not this primitive has focus. func (t *TextView) HasFocus() bool { // Implemented here with locking because this may be used in the "changed" // callback. t.Lock() defer t.Unlock() return t.Box.HasFocus() } // Write lets us implement the io.Writer interface. func (t *TextView) Write(p []byte) (n int, err error) { t.Lock() defer t.Unlock() return t.write(p) } // write is the internal implementation of Write. It is used by [TextViewWriter] // and anywhere that we need to perform a write without locking the buffer. func (t *TextView) write(p []byte) (n int, err error) { // Notify at the end. changed := t.changed if changed != nil { defer func() { // We always call the "changed" function in a separate goroutine to avoid // deadlocks. go changed() }() } return t.text.Write(p) } // BatchWriter returns a new writer that can be used to write into the buffer // but without Locking/Unlocking the buffer on every write, as [TextView.Write] // and [TextView.Clear] do. The lock will be acquired once when BatchWriter is // called, and will be released when the returned writer is closed. Example: // // tv := tview.NewTextView() // w := tv.BatchWriter() // defer w.Close() // w.Clear() // fmt.Fprintln(w, "To sit in solemn silence") // fmt.Fprintln(w, "on a dull, dark, dock") // fmt.Println(tv.GetText(false)) // // Note that using the batch writer requires you to manage any issues that may // arise from concurrency yourself. See package description for details on // dealing with concurrency. func (t *TextView) BatchWriter() TextViewWriter { t.Lock() return TextViewWriter{ t: t, } } // resetIndex resets all indexed data, including the line index. func (t *TextView) resetIndex() { t.lineIndex = nil t.regions = make(map[string]int) t.longestLine = 0 } // parseAhead parses the text buffer starting at the last line in // [TextView.lineIndex] until either the end of the buffer or until stop returns // true for the last complete line that was parsed. If wrapping is enabled, // width will be used as the available screen width. If width is 0, it is // assumed that there is no wrapping. This can happen when this function is // called before the first time [TextView.Draw] is called. // // There is no guarantee that stop will ever be called. // // The function adds entries to the [TextView.lineIndex] slice and the // [TextView.regions] map and adjusts [TextView.longestLine]. func (t *TextView) parseAhead(width int, stop func(lineNumber int, line *textViewLine) bool) { if t.text.Len() == 0 { return // No text. Nothing to parse. } // If width is 0, make it infinite. if width == 0 { width = math.MaxInt } // What kind of tags do we scan for? var options stepOptions if t.styleTags { options |= stepOptionsStyle } if t.regionTags { options |= stepOptionsRegion } // Start parsing at the last line in the index. var lastLine *textViewLine str := t.text.String() if len(t.lineIndex) == 0 { // Insert the first line. lastLine = &textViewLine{ state: &stepState{ unisegState: -1, style: t.textStyle, }, } t.lineIndex = append(t.lineIndex, lastLine) } else { // Reset the last line. lastLine = t.lineIndex[len(t.lineIndex)-1] lastLine.width = 0 lastLine.length = 0 str = str[lastLine.offset:] } // Parse. var ( lastOption int // Text index of the last optional split point. lastOptionWidth int // Line width at last optional split point. lastOptionState *stepState // State at last optional split point. leftPos int // The current position in the line (only for left-alignment). offset = lastLine.offset // Text index of the current position. st = *lastLine.state // Current state. state = &st // Pointer to current state. ) for len(str) > 0 { var c string region := state.region c, str, state = step(str, state, options) w := state.Width() if c == "\t" { if t.align == AlignLeft { w = TabSize - leftPos%TabSize } else { w = TabSize } } length := state.GrossLength() // Would it exceed the line width? if t.wrap && lastLine.width+w > width { if lastOptionWidth == 0 { // No split point so far. Just split at the current position. if stop(len(t.lineIndex)-1, lastLine) { return } st := *state lastLine = &textViewLine{ offset: offset, state: &st, } lastOption, lastOptionWidth, leftPos = 0, 0, 0 } else { // Split at the last split point. newLine := &textViewLine{ offset: lastLine.offset + lastOption, width: lastLine.width - lastOptionWidth, length: lastLine.length - lastOption, state: lastOptionState, } lastLine.width = lastOptionWidth lastLine.length = lastOption if stop(len(t.lineIndex)-1, lastLine) { return } lastLine = newLine lastOption, lastOptionWidth = 0, 0 leftPos -= lastOptionWidth } t.lineIndex = append(t.lineIndex, lastLine) } // Move ahead. lastLine.width += w lastLine.length += length offset += length leftPos += w // Do we have a new longest line? if lastLine.width > t.longestLine { t.longestLine = lastLine.width } // Check for split points. if lineBreak, optional := state.LineBreak(); lineBreak { if optional { if t.wrap && t.wordWrap { // Remember this split point. lastOption = offset - lastLine.offset lastOptionWidth = lastLine.width st := *state lastOptionState = &st } } else { // We must split here. if stop(len(t.lineIndex)-1, lastLine) { return } st := *state lastLine = &textViewLine{ offset: offset, state: &st, } t.lineIndex = append(t.lineIndex, lastLine) lastOption, lastOptionWidth, leftPos = 0, 0, 0 } } // Add new regions if any. if t.regionTags && state.region != "" && state.region != region { if _, ok := t.regions[state.region]; !ok { t.regions[state.region] = len(t.lineIndex) - 1 } } } } // Draw draws this primitive onto the screen. func (t *TextView) Draw(screen tcell.Screen) { t.Box.DrawForSubclass(screen, t) t.Lock() defer t.Unlock() // Get the available size. x, y, width, height := t.GetInnerRect() t.pageSize = height // Draw label. _, labelBg, _ := t.labelStyle.Decompose() if t.labelWidth > 0 { labelWidth := t.labelWidth if labelWidth > width { labelWidth = width } printWithStyle(screen, t.label, x, y, 0, labelWidth, AlignLeft, t.labelStyle, labelBg == tcell.ColorDefault) x += labelWidth width -= labelWidth } else { _, _, drawnWidth := printWithStyle(screen, t.label, x, y, 0, width, AlignLeft, t.labelStyle, labelBg == tcell.ColorDefault) x += drawnWidth width -= drawnWidth } // What's the space for the text element? if t.width > 0 && t.width < width { width = t.width } if t.height > 0 && t.height < height { height = t.height } if width <= 0 { return // No space left for the text area. } // Draw the text element if necessary. _, bg, _ := t.textStyle.Decompose() if bg != t.backgroundColor { for row := 0; row < height; row++ { for column := 0; column < width; column++ { screen.SetContent(x+column, y+row, ' ', nil, t.textStyle) } } } // If the width has changed, we need to reindex. if width != t.lastWidth && t.wrap { t.resetIndex() } t.lastWidth = width // What are our parse options? var options stepOptions if t.styleTags { options |= stepOptionsStyle } if t.regionTags { options |= stepOptionsRegion } // Scroll to highlighted regions. if t.regionTags && t.scrollToHighlights { // Make sure we know all highlighted regions. t.parseAhead(width, func(lineNumber int, line *textViewLine) bool { for regionID := range t.highlights { if _, ok := t.regions[regionID]; !ok { return false } t.highlights[regionID] = struct{}{} } return true }) // What is the line range for all highlighted regions? var ( firstRegion string fromHighlight, toHighlight int ) for regionID := range t.highlights { // We can safely assume that the region is known. line := t.regions[regionID] if firstRegion == "" || line > toHighlight { toHighlight = line } if firstRegion == "" || line < fromHighlight { fromHighlight = line firstRegion = regionID } } if firstRegion != "" { // Do we fit the entire height? if toHighlight-fromHighlight+1 < height { // Yes, let's center the highlights. t.lineOffset = (fromHighlight + toHighlight - height) / 2 } else { // No, let's move to the start of the highlights. t.lineOffset = fromHighlight } // If the highlight is too far to the right, move it to the middle. if t.wrap { // Find the first highlight's column in screen space. line := t.lineIndex[fromHighlight] st := *line.state state := &st str := t.text.String()[line.offset:] var posHighlight int for len(str) > 0 && posHighlight < line.width && state.region != firstRegion { _, str, state = step(str, state, options) posHighlight += state.Width() } if posHighlight-t.columnOffset > 3*width/4 { t.columnOffset = posHighlight - width/2 } // If the highlight is off-screen on the left, move it on-screen. if posHighlight-t.columnOffset < 0 { t.columnOffset = posHighlight - width/4 } } } } t.scrollToHighlights = false // Make sure our index has enough lines. t.parseAhead(width, func(lineNumber int, line *textViewLine) bool { return lineNumber >= t.lineOffset+height }) // Adjust line offset. if t.trackEnd { t.parseAhead(width, func(lineNumber int, line *textViewLine) bool { return false }) t.lineOffset = len(t.lineIndex) - height } if t.lineOffset > len(t.lineIndex)-height { t.lineOffset = len(t.lineIndex) - height } if t.lineOffset < 0 { t.lineOffset = 0 } // Adjust column offset. if t.align == AlignLeft || t.align == AlignRight { if t.columnOffset+width > t.longestLine { t.columnOffset = t.longestLine - width } if t.columnOffset < 0 { t.columnOffset = 0 } } else { // AlignCenter. half := (t.longestLine - width) / 2 if half > 0 { if t.columnOffset > half { t.columnOffset = half } if t.columnOffset < -half { t.columnOffset = -half } } else { t.columnOffset = 0 } } // Draw visible lines. for line := t.lineOffset; line < len(t.lineIndex); line++ { // Are we done? if line-t.lineOffset >= height { break } info := t.lineIndex[line] info.regions = nil // Determine starting point of the text and the screen. var skipWidth, xPos int switch t.align { case AlignLeft: skipWidth = t.columnOffset case AlignCenter: skipWidth = t.columnOffset + (info.width-width)/2 if skipWidth < 0 { skipWidth = 0 xPos = (width-info.width)/2 - t.columnOffset } case AlignRight: maxWidth := width if t.longestLine > width { maxWidth = t.longestLine } skipWidth = t.columnOffset - (maxWidth - info.width) if skipWidth < 0 { skipWidth = 0 xPos = maxWidth - info.width - t.columnOffset } } // Draw the line text. str := t.text.String()[info.offset:] st := *info.state state := &st var processed int for len(str) > 0 && xPos < width && processed < info.length { var ch string ch, str, state = step(str, state, options) w := state.Width() if ch == "\t" { if t.align == AlignLeft { w = TabSize - xPos%TabSize } else { w = TabSize } } processed += state.GrossLength() // Don't draw anything while we skip characters. if skipWidth > 0 { skipWidth -= w continue } // Draw this character. if w > 0 { style := state.Style() // Do we highlight this character? var highlighted bool if state.region != "" { if _, ok := t.highlights[state.region]; ok { highlighted = true } } if highlighted { fg, bg, _ := style.Decompose() if bg == t.backgroundColor { r, g, b := fg.RGB() c := colorful.Color{R: float64(r) / 255, G: float64(g) / 255, B: float64(b) / 255} _, _, li := c.Hcl() if li < .5 { bg = tcell.ColorWhite } else { bg = tcell.ColorBlack } } style = style.Background(fg).Foreground(bg) } // Paint on screen. for offset := w - 1; offset >= 0; offset-- { runes := []rune(ch) if offset == 0 { screen.SetContent(x+xPos+offset, y+line-t.lineOffset, runes[0], runes[1:], style) } else { screen.SetContent(x+xPos+offset, y+line-t.lineOffset, ' ', nil, style) } } // Register this region. if state.region != "" { if info.regions == nil { info.regions = make(map[string][2]int) } fromTo, ok := info.regions[state.region] if !ok { fromTo = [2]int{xPos, xPos + w} } else { if xPos < fromTo[0] { fromTo[0] = xPos } if xPos+w > fromTo[1] { fromTo[1] = xPos + w } } info.regions[state.region] = fromTo } } xPos += w } } // If this view is not scrollable, we'll purge the buffer of lines that have // scrolled out of view. var purgeStart int if !t.scrollable && t.lineOffset > 0 { purgeStart = t.lineOffset } // If we reached the maximum number of lines, we'll purge the buffer of the // oldest lines. if t.maxLines > 0 && len(t.lineIndex) > t.maxLines { purgeStart = len(t.lineIndex) - t.maxLines } // Purge. if purgeStart > 0 && purgeStart < len(t.lineIndex) { newText := t.text.String()[t.lineIndex[purgeStart].offset:] t.text.Reset() t.text.WriteString(newText) t.resetIndex() t.lineOffset = 0 } } // InputHandler returns the handler for this primitive. func (t *TextView) InputHandler() func(event *tcell.EventKey, setFocus func(p Primitive)) { return t.WrapInputHandler(func(event *tcell.EventKey, setFocus func(p Primitive)) { key := event.Key() if key == tcell.KeyEscape || key == tcell.KeyEnter || key == tcell.KeyTab || key == tcell.KeyBacktab { if t.done != nil { t.done(key) } if t.finished != nil { t.finished(key) } return } if !t.scrollable { return } switch key { case tcell.KeyRune: switch event.Rune() { case 'g': // Home. t.trackEnd = false t.lineOffset = 0 t.columnOffset = 0 case 'G': // End. t.trackEnd = true t.columnOffset = 0 case 'j': // Down. t.lineOffset++ case 'k': // Up. t.trackEnd = false t.lineOffset-- case 'h': // Left. t.columnOffset-- case 'l': // Right. t.columnOffset++ } case tcell.KeyHome: t.trackEnd = false t.lineOffset = 0 t.columnOffset = 0 case tcell.KeyEnd: t.trackEnd = true t.columnOffset = 0 case tcell.KeyUp: t.trackEnd = false t.lineOffset-- case tcell.KeyDown: t.lineOffset++ case tcell.KeyLeft: t.columnOffset-- case tcell.KeyRight: t.columnOffset++ case tcell.KeyPgDn, tcell.KeyCtrlF: t.lineOffset += t.pageSize case tcell.KeyPgUp, tcell.KeyCtrlB: t.trackEnd = false t.lineOffset -= t.pageSize } }) } // MouseHandler returns the mouse handler for this primitive. func (t *TextView) MouseHandler() func(action MouseAction, event *tcell.EventMouse, setFocus func(p Primitive)) (consumed bool, capture Primitive) { return t.WrapMouseHandler(func(action MouseAction, event *tcell.EventMouse, setFocus func(p Primitive)) (consumed bool, capture Primitive) { x, y := event.Position() if !t.InRect(x, y) { return false, nil } rectX, rectY, width, height := t.GetInnerRect() switch action { case MouseLeftDown: setFocus(t) consumed = true case MouseLeftClick: if t.regionTags && t.InInnerRect(x, y) { // Find a region to highlight. x -= rectX y -= rectY var highlightedID string if y+t.lineOffset < len(t.lineIndex) { line := t.lineIndex[y+t.lineOffset] for regionID, fromTo := range line.regions { if x >= fromTo[0] && x < fromTo[1] { highlightedID = regionID break } } } if highlightedID != "" { t.Highlight(highlightedID) } else if !t.toggleHighlights { t.Highlight() } } consumed = true case MouseScrollUp: if !t.scrollable { break } t.trackEnd = false t.lineOffset-- consumed = true case MouseScrollDown: if !t.scrollable { break } t.lineOffset++ if len(t.lineIndex)-t.lineOffset < height { // If we scroll to the end, turn on tracking. t.parseAhead(width, func(lineNumber int, line *textViewLine) bool { return len(t.lineIndex)-t.lineOffset < height }) if len(t.lineIndex)-t.lineOffset < height { t.trackEnd = true } } consumed = true } return }) }