// Copyright 2019 Google Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // Package trig implements various trigonometrical calculations. package trig import ( "fmt" "image" "math" "sort" "github.com/mum4k/termdash/private/numbers" ) // CirclePointAtAngle given an angle in degrees and a circle midpoint and // radius, calculates coordinates of a point on the circle at that angle. // Angles are zero at the X axis and grow counter-clockwise. func CirclePointAtAngle(degrees int, mid image.Point, radius int) image.Point { angle := numbers.DegreesToRadians(degrees) r := float64(radius) x := mid.X + int(math.Round(r*math.Cos(angle))) // Y coordinates grow down on the canvas. y := mid.Y - int(math.Round(r*math.Sin(angle))) return image.Point{x, y} } // CircleAngleAtPoint given a point on a circle and its midpoint, // calculates the angle in degrees. // Angles are zero at the X axis and grow counter-clockwise. func CircleAngleAtPoint(point, mid image.Point) int { adj := float64(point.X - mid.X) opp := float64(mid.Y - point.Y) if opp != 0 { angle := math.Atan2(opp, adj) return numbers.RadiansToDegrees(angle) } else if adj >= 0 { return 0 } else { return 180 } } // PointIsIn asserts whether the provided point is inside of a shape outlined // with the provided points. // Does not verify that the shape is closed or complete, it merely counts the // number of intersections with the shape on one row. func PointIsIn(p image.Point, points []image.Point) bool { maxX := p.X set := map[image.Point]struct{}{} for _, sp := range points { set[sp] = struct{}{} if sp.X > maxX { maxX = sp.X } } if _, ok := set[p]; ok { // Not inside if it is on the shape. return false } byY := map[int][]int{} // maps y->x for p := range set { byY[p.Y] = append(byY[p.Y], p.X) } for y := range byY { sort.Ints(byY[y]) } set = map[image.Point]struct{}{} for y, xses := range byY { set[image.Point{xses[0], y}] = struct{}{} if len(xses) == 1 { continue } for i := 1; i < len(xses); i++ { if xses[i] != xses[i-1]+1 { set[image.Point{xses[i], y}] = struct{}{} } } } crosses := 0 for x := p.X; x <= maxX; x++ { if _, ok := set[image.Point{x, p.Y}]; ok { crosses++ } } return crosses%2 != 0 } const ( // MinAngle is the smallest valid angle in degrees. MinAngle = 0 // MaxAngle is the largest valid angle in degrees. MaxAngle = 360 ) // angleRange represents a range of angles in degrees. // The range includes all angles such that start <= angle <= end. type angleRange struct { // start is the start if the range. // This is always less or equal to the end. start int // end is the end of the range. end int } // contains asserts whether the specified angle is in the range. func (ar *angleRange) contains(angle int) bool { return angle >= ar.start && angle <= ar.end } // normalizeRange normalizes the start and end angles in degrees into ranges of // angles. Useful for cases where the 0/360 point falls within the range. // E.g: // 0,25 => angleRange{0, 26} // 0,360 => angleRange{0, 361} // 359,20 => angleRange{359, 361}, angleRange{0, 21} func normalizeRange(start, end int) ([]*angleRange, error) { if start < MinAngle || start > MaxAngle { return nil, fmt.Errorf("invalid start angle:%d, must be in range %d <= start <= %d", start, MinAngle, MaxAngle) } if end < MinAngle || end > MaxAngle { return nil, fmt.Errorf("invalid end angle:%d, must be in range %d <= end <= %d", end, MinAngle, MaxAngle) } if start == MaxAngle && end == 0 { start, end = end, start } if start <= end { return []*angleRange{ {start, end}, }, nil } // The range is crossing the 0/360 degree point. // Break it into multiple ranges. return []*angleRange{ {start, MaxAngle}, {0, end}, }, nil } // RangeSize returns the size of the degree range. // E.g: // 0,25 => 25 // 359,1 => 2 func RangeSize(start, end int) (int, error) { ranges, err := normalizeRange(start, end) if err != nil { return 0, err } if len(ranges) == 1 { return end - start, nil } return MaxAngle - start + end, nil } // RangeMid returns an angle that lies in the middle between start and end. // E.g: // 0,10 => 5 // 350,10 => 0 func RangeMid(start, end int) (int, error) { ranges, err := normalizeRange(start, end) if err != nil { return 0, err } if len(ranges) == 1 { return start + ((end - start) / 2), nil } length := MaxAngle - start + end want := length / 2 res := start + want return res % MaxAngle, nil } // FilterByAngle filters the provided points, returning only those that fall // within the starting and the ending angle on a circle with the provided mid // point. func FilterByAngle(points []image.Point, mid image.Point, start, end int) ([]image.Point, error) { var res []image.Point ranges, err := normalizeRange(start, end) if err != nil { return nil, err } if mid.X < 0 || mid.Y < 0 { return nil, fmt.Errorf("the mid point %v cannot have negative coordinates", mid) } for _, p := range points { angle := CircleAngleAtPoint(p, mid) // Edge case, this might mean 0 or 360. // Decide based on where we are starting. if angle == 0 && start > 0 { angle = MaxAngle } for _, r := range ranges { if r.contains(angle) { res = append(res, p) break } } } return res, nil }