caddy/context.go

454 lines
16 KiB
Go

// Copyright 2015 Matthew Holt and The Caddy Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package caddy
import (
"context"
"encoding/json"
"fmt"
"log"
"reflect"
"github.com/caddyserver/certmagic"
"go.uber.org/zap"
)
// Context is a type which defines the lifetime of modules that
// are loaded and provides access to the parent configuration
// that spawned the modules which are loaded. It should be used
// with care and wrapped with derivation functions from the
// standard context package only if you don't need the Caddy
// specific features. These contexts are canceled when the
// lifetime of the modules loaded from it is over.
//
// Use NewContext() to get a valid value (but most modules will
// not actually need to do this).
type Context struct {
context.Context
moduleInstances map[string][]interface{}
cfg *Config
cleanupFuncs []func()
}
// NewContext provides a new context derived from the given
// context ctx. Normally, you will not need to call this
// function unless you are loading modules which have a
// different lifespan than the ones for the context the
// module was provisioned with. Be sure to call the cancel
// func when the context is to be cleaned up so that
// modules which are loaded will be properly unloaded.
// See standard library context package's documentation.
func NewContext(ctx Context) (Context, context.CancelFunc) {
newCtx := Context{moduleInstances: make(map[string][]interface{}), cfg: ctx.cfg}
c, cancel := context.WithCancel(ctx.Context)
wrappedCancel := func() {
cancel()
for _, f := range ctx.cleanupFuncs {
f()
}
for modName, modInstances := range newCtx.moduleInstances {
for _, inst := range modInstances {
if cu, ok := inst.(CleanerUpper); ok {
err := cu.Cleanup()
if err != nil {
log.Printf("[ERROR] %s (%p): cleanup: %v", modName, inst, err)
}
}
}
}
}
newCtx.Context = c
return newCtx, wrappedCancel
}
// OnCancel executes f when ctx is canceled.
func (ctx *Context) OnCancel(f func()) {
ctx.cleanupFuncs = append(ctx.cleanupFuncs, f)
}
// LoadModule loads the Caddy module(s) from the specified field of the parent struct
// pointer and returns the loaded module(s). The struct pointer and its field name as
// a string are necessary so that reflection can be used to read the struct tag on the
// field to get the module namespace and inline module name key (if specified).
//
// The field can be any one of the supported raw module types: json.RawMessage,
// []json.RawMessage, map[string]json.RawMessage, or []map[string]json.RawMessage.
// ModuleMap may be used in place of map[string]json.RawMessage. The return value's
// underlying type mirrors the input field's type:
//
// json.RawMessage => interface{}
// []json.RawMessage => []interface{}
// [][]json.RawMessage => [][]interface{}
// map[string]json.RawMessage => map[string]interface{}
// []map[string]json.RawMessage => []map[string]interface{}
//
// The field must have a "caddy" struct tag in this format:
//
// caddy:"key1=val1 key2=val2"
//
// To load modules, a "namespace" key is required. For example, to load modules
// in the "http.handlers" namespace, you'd put: `namespace=http.handlers` in the
// Caddy struct tag.
//
// The module name must also be available. If the field type is a map or slice of maps,
// then key is assumed to be the module name if an "inline_key" is NOT specified in the
// caddy struct tag. In this case, the module name does NOT need to be specified in-line
// with the module itself.
//
// If not a map, or if inline_key is non-empty, then the module name must be embedded
// into the values, which must be objects; then there must be a key in those objects
// where its associated value is the module name. This is called the "inline key",
// meaning the key containing the module's name that is defined inline with the module
// itself. You must specify the inline key in a struct tag, along with the namespace:
//
// caddy:"namespace=http.handlers inline_key=handler"
//
// This will look for a key/value pair like `"handler": "..."` in the json.RawMessage
// in order to know the module name.
//
// To make use of the loaded module(s) (the return value), you will probably want
// to type-assert each interface{} value(s) to the types that are useful to you
// and store them on the same struct. Storing them on the same struct makes for
// easy garbage collection when your host module is no longer needed.
//
// Loaded modules have already been provisioned and validated. Upon returning
// successfully, this method clears the json.RawMessage(s) in the field since
// the raw JSON is no longer needed, and this allows the GC to free up memory.
func (ctx Context) LoadModule(structPointer interface{}, fieldName string) (interface{}, error) {
val := reflect.ValueOf(structPointer).Elem().FieldByName(fieldName)
typ := val.Type()
field, ok := reflect.TypeOf(structPointer).Elem().FieldByName(fieldName)
if !ok {
panic(fmt.Sprintf("field %s does not exist in %#v", fieldName, structPointer))
}
opts, err := ParseStructTag(field.Tag.Get("caddy"))
if err != nil {
panic(fmt.Sprintf("malformed tag on field %s: %v", fieldName, err))
}
moduleNamespace, ok := opts["namespace"]
if !ok {
panic(fmt.Sprintf("missing 'namespace' key in struct tag on field %s", fieldName))
}
inlineModuleKey := opts["inline_key"]
var result interface{}
switch val.Kind() {
case reflect.Slice:
if isJSONRawMessage(typ) {
// val is `json.RawMessage` ([]uint8 under the hood)
if inlineModuleKey == "" {
panic("unable to determine module name without inline_key when type is not a ModuleMap")
}
val, err := ctx.loadModuleInline(inlineModuleKey, moduleNamespace, val.Interface().(json.RawMessage))
if err != nil {
return nil, err
}
result = val
} else if isJSONRawMessage(typ.Elem()) {
// val is `[]json.RawMessage`
if inlineModuleKey == "" {
panic("unable to determine module name without inline_key because type is not a ModuleMap")
}
var all []interface{}
for i := 0; i < val.Len(); i++ {
val, err := ctx.loadModuleInline(inlineModuleKey, moduleNamespace, val.Index(i).Interface().(json.RawMessage))
if err != nil {
return nil, fmt.Errorf("position %d: %v", i, err)
}
all = append(all, val)
}
result = all
} else if typ.Elem().Kind() == reflect.Slice && isJSONRawMessage(typ.Elem().Elem()) {
// val is `[][]json.RawMessage`
if inlineModuleKey == "" {
panic("unable to determine module name without inline_key because type is not a ModuleMap")
}
var all [][]interface{}
for i := 0; i < val.Len(); i++ {
innerVal := val.Index(i)
var allInner []interface{}
for j := 0; j < innerVal.Len(); j++ {
innerInnerVal, err := ctx.loadModuleInline(inlineModuleKey, moduleNamespace, innerVal.Index(j).Interface().(json.RawMessage))
if err != nil {
return nil, fmt.Errorf("position %d: %v", j, err)
}
allInner = append(allInner, innerInnerVal)
}
all = append(all, allInner)
}
result = all
} else if isModuleMapType(typ.Elem()) {
// val is `[]map[string]json.RawMessage`
var all []map[string]interface{}
for i := 0; i < val.Len(); i++ {
thisSet, err := ctx.loadModulesFromSomeMap(moduleNamespace, inlineModuleKey, val.Index(i))
if err != nil {
return nil, err
}
all = append(all, thisSet)
}
result = all
}
case reflect.Map:
// val is a ModuleMap or some other kind of map
result, err = ctx.loadModulesFromSomeMap(moduleNamespace, inlineModuleKey, val)
if err != nil {
return nil, err
}
default:
return nil, fmt.Errorf("unrecognized type for module: %s", typ)
}
// we're done with the raw bytes; allow GC to deallocate
val.Set(reflect.Zero(typ))
return result, nil
}
// loadModulesFromSomeMap loads modules from val, which must be a type of map[string]interface{}.
// Depending on inlineModuleKey, it will be interpreted as either a ModuleMap (key is the module
// name) or as a regular map (key is not the module name, and module name is defined inline).
func (ctx Context) loadModulesFromSomeMap(namespace, inlineModuleKey string, val reflect.Value) (map[string]interface{}, error) {
// if no inline_key is specified, then val must be a ModuleMap,
// where the key is the module name
if inlineModuleKey == "" {
if !isModuleMapType(val.Type()) {
panic(fmt.Sprintf("expected ModuleMap because inline_key is empty; but we do not recognize this type: %s", val.Type()))
}
return ctx.loadModuleMap(namespace, val)
}
// otherwise, val is a map with modules, but the module name is
// inline with each value (the key means something else)
return ctx.loadModulesFromRegularMap(namespace, inlineModuleKey, val)
}
// loadModulesFromRegularMap loads modules from val, where val is a map[string]json.RawMessage.
// Map keys are NOT interpreted as module names, so module names are still expected to appear
// inline with the objects.
func (ctx Context) loadModulesFromRegularMap(namespace, inlineModuleKey string, val reflect.Value) (map[string]interface{}, error) {
mods := make(map[string]interface{})
iter := val.MapRange()
for iter.Next() {
k := iter.Key()
v := iter.Value()
mod, err := ctx.loadModuleInline(inlineModuleKey, namespace, v.Interface().(json.RawMessage))
if err != nil {
return nil, fmt.Errorf("key %s: %v", k, err)
}
mods[k.String()] = mod
}
return mods, nil
}
// loadModuleMap loads modules from a ModuleMap, i.e. map[string]interface{}, where the key is the
// module name. With a module map, module names do not need to be defined inline with their values.
func (ctx Context) loadModuleMap(namespace string, val reflect.Value) (map[string]interface{}, error) {
all := make(map[string]interface{})
iter := val.MapRange()
for iter.Next() {
k := iter.Key().Interface().(string)
v := iter.Value().Interface().(json.RawMessage)
moduleName := namespace + "." + k
if namespace == "" {
moduleName = k
}
val, err := ctx.LoadModuleByID(moduleName, v)
if err != nil {
return nil, fmt.Errorf("module name '%s': %v", k, err)
}
all[k] = val
}
return all, nil
}
// LoadModuleByID decodes rawMsg into a new instance of mod and
// returns the value. If mod.New is nil, an error is returned.
// If the module implements Validator or Provisioner interfaces,
// those methods are invoked to ensure the module is fully
// configured and valid before being used.
//
// This is a lower-level method and will usually not be called
// directly by most modules. However, this method is useful when
// dynamically loading/unloading modules in their own context,
// like from embedded scripts, etc.
func (ctx Context) LoadModuleByID(id string, rawMsg json.RawMessage) (interface{}, error) {
modulesMu.RLock()
mod, ok := modules[id]
modulesMu.RUnlock()
if !ok {
return nil, fmt.Errorf("unknown module: %s", id)
}
if mod.New == nil {
return nil, fmt.Errorf("module '%s' has no constructor", mod.ID)
}
val := mod.New().(interface{})
// value must be a pointer for unmarshaling into concrete type, even if
// the module's concrete type is a slice or map; New() *should* return
// a pointer, otherwise unmarshaling errors or panics will occur
if rv := reflect.ValueOf(val); rv.Kind() != reflect.Ptr {
log.Printf("[WARNING] ModuleInfo.New() for module '%s' did not return a pointer,"+
" so we are using reflection to make a pointer instead; please fix this by"+
" using new(Type) or &Type notation in your module's New() function.", id)
val = reflect.New(rv.Type()).Elem().Addr().Interface().(Module)
}
// fill in its config only if there is a config to fill in
if len(rawMsg) > 0 {
err := strictUnmarshalJSON(rawMsg, &val)
if err != nil {
return nil, fmt.Errorf("decoding module config: %s: %v", mod, err)
}
}
if val == nil {
// returned module values are almost always type-asserted
// before being used, so a nil value would panic; and there
// is no good reason to explicitly declare null modules in
// a config; it might be because the user is trying to achieve
// a result the developer isn't expecting, which is a smell
return nil, fmt.Errorf("module value cannot be null")
}
if prov, ok := val.(Provisioner); ok {
err := prov.Provision(ctx)
if err != nil {
// incomplete provisioning could have left state
// dangling, so make sure it gets cleaned up
if cleanerUpper, ok := val.(CleanerUpper); ok {
err2 := cleanerUpper.Cleanup()
if err2 != nil {
err = fmt.Errorf("%v; additionally, cleanup: %v", err, err2)
}
}
return nil, fmt.Errorf("provision %s: %v", mod, err)
}
}
if validator, ok := val.(Validator); ok {
err := validator.Validate()
if err != nil {
// since the module was already provisioned, make sure we clean up
if cleanerUpper, ok := val.(CleanerUpper); ok {
err2 := cleanerUpper.Cleanup()
if err2 != nil {
err = fmt.Errorf("%v; additionally, cleanup: %v", err, err2)
}
}
return nil, fmt.Errorf("%s: invalid configuration: %v", mod, err)
}
}
ctx.moduleInstances[id] = append(ctx.moduleInstances[id], val)
return val, nil
}
// loadModuleInline loads a module from a JSON raw message which decodes to
// a map[string]interface{}, where one of the object keys is moduleNameKey
// and the corresponding value is the module name (as a string) which can
// be found in the given scope. In other words, the module name is declared
// in-line with the module itself.
//
// This allows modules to be decoded into their concrete types and used when
// their names cannot be the unique key in a map, such as when there are
// multiple instances in the map or it appears in an array (where there are
// no custom keys). In other words, the key containing the module name is
// treated special/separate from all the other keys in the object.
func (ctx Context) loadModuleInline(moduleNameKey, moduleScope string, raw json.RawMessage) (interface{}, error) {
moduleName, raw, err := getModuleNameInline(moduleNameKey, raw)
if err != nil {
return nil, err
}
val, err := ctx.LoadModuleByID(moduleScope+"."+moduleName, raw)
if err != nil {
return nil, fmt.Errorf("loading module '%s': %v", moduleName, err)
}
return val, nil
}
// App returns the configured app named name. If that app has
// not yet been loaded and provisioned, it will be immediately
// loaded and provisioned. If no app with that name is
// configured, a new empty one will be instantiated instead.
// (The app module must still be registered.) This must not be
// called during the Provision/Validate phase to reference a
// module's own host app (since the parent app module is still
// in the process of being provisioned, it is not yet ready).
func (ctx Context) App(name string) (interface{}, error) {
if app, ok := ctx.cfg.apps[name]; ok {
return app, nil
}
appRaw := ctx.cfg.AppsRaw[name]
modVal, err := ctx.LoadModuleByID(name, appRaw)
if err != nil {
return nil, fmt.Errorf("loading %s app module: %v", name, err)
}
if appRaw != nil {
ctx.cfg.AppsRaw[name] = nil // allow GC to deallocate
}
ctx.cfg.apps[name] = modVal.(App)
return modVal, nil
}
// AppIsConfigured returns whether an app named name has been
// configured. Can be called before calling App() to avoid
// instantiating an empty app when that's not desirable.
func (ctx Context) AppIsConfigured(name string) bool {
if _, ok := ctx.cfg.apps[name]; ok {
return true
}
appRaw := ctx.cfg.AppsRaw[name]
return appRaw != nil
}
// Storage returns the configured Caddy storage implementation.
func (ctx Context) Storage() certmagic.Storage {
return ctx.cfg.storage
}
// Logger returns a logger that can be used by mod.
func (ctx Context) Logger(mod Module) *zap.Logger {
if ctx.cfg == nil {
// often the case in tests; just use a dev logger
l, err := zap.NewDevelopment()
if err != nil {
panic("config missing, unable to create dev logger: " + err.Error())
}
return l
}
return ctx.cfg.Logging.Logger(mod)
}