Mainflux.mainflux/vendor/gonum.org/v1/gonum/lapack/gonum/dpbtrs.go

70 lines
2.0 KiB
Go
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright ©2019 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gonum
import (
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/blas64"
)
// Dpbtrs solves a system of linear equations A*X = B with an n×n symmetric
// positive definite band matrix A using the Cholesky factorization
//
// A = Uᵀ * U if uplo == blas.Upper
// A = L * Lᵀ if uplo == blas.Lower
//
// computed by Dpbtrf. kd is the number of super- or sub-diagonals of A. See the
// documentation for Dpbtrf for a description of the band storage format of A.
//
// On entry, b contains the n×nrhs right hand side matrix B. On return, it is
// overwritten with the solution matrix X.
func (Implementation) Dpbtrs(uplo blas.Uplo, n, kd, nrhs int, ab []float64, ldab int, b []float64, ldb int) {
switch {
case uplo != blas.Upper && uplo != blas.Lower:
panic(badUplo)
case n < 0:
panic(nLT0)
case kd < 0:
panic(kdLT0)
case nrhs < 0:
panic(nrhsLT0)
case ldab < kd+1:
panic(badLdA)
case ldb < max(1, nrhs):
panic(badLdB)
}
// Quick return if possible.
if n == 0 || nrhs == 0 {
return
}
if len(ab) < (n-1)*ldab+kd+1 {
panic(shortAB)
}
if len(b) < (n-1)*ldb+nrhs {
panic(shortB)
}
bi := blas64.Implementation()
if uplo == blas.Upper {
// Solve A*X = B where A = Uᵀ*U.
for j := 0; j < nrhs; j++ {
// Solve Uᵀ*Y = B, overwriting B with Y.
bi.Dtbsv(blas.Upper, blas.Trans, blas.NonUnit, n, kd, ab, ldab, b[j:], ldb)
// Solve U*X = Y, overwriting Y with X.
bi.Dtbsv(blas.Upper, blas.NoTrans, blas.NonUnit, n, kd, ab, ldab, b[j:], ldb)
}
} else {
// Solve A*X = B where A = L*Lᵀ.
for j := 0; j < nrhs; j++ {
// Solve L*Y = B, overwriting B with Y.
bi.Dtbsv(blas.Lower, blas.NoTrans, blas.NonUnit, n, kd, ab, ldab, b[j:], ldb)
// Solve Lᵀ*X = Y, overwriting Y with X.
bi.Dtbsv(blas.Lower, blas.Trans, blas.NonUnit, n, kd, ab, ldab, b[j:], ldb)
}
}
}