incubator-nuttx/crypto/sha2.c

1076 lines
29 KiB
C

/****************************************************************************
* crypto/sha2.c
* $OpenBSD: sha2.c,v 1.19 2021/03/12 10:22:46 jsg Exp $
* FILE: sha2.c
* AUTHOR: Aaron D. Gifford <me@aarongifford.com>
*
* Copyright (c) 2000-2001, Aaron D. Gifford
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the copyright holder nor the names of contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $From: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <endian.h>
#include <string.h>
#include <sys/time.h>
#include <crypto/sha2.h>
/* UNROLLED TRANSFORM LOOP NOTE:
* You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
* loop version for the hash transform rounds (defined using macros
* later in this file). Either define on the command line, for example:
*
* cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
*
* or define below:
*
* #define SHA2_UNROLL_TRANSFORM
*
*/
#ifndef SMALL_KERNEL
# if defined(__amd64__) || defined(__i386__)
# define SHA2_UNROLL_TRANSFORM
# endif
#endif
/* SHA-256/384/512 Machine Architecture Definitions */
/* BYTE_ORDER NOTE:
*
* Please make sure that your system defines BYTE_ORDER. If your
* architecture is little-endian, make sure it also defines
* LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
* equivalent.
*
* If your system does not define the above, then you can do so by
* hand like this:
*
* #define LITTLE_ENDIAN 1234
* #define BIG_ENDIAN 4321
*
* And for little-endian machines, add:
*
* #define BYTE_ORDER LITTLE_ENDIAN
*
* Or for big-endian machines:
*
* #define BYTE_ORDER BIG_ENDIAN
*
* The FreeBSD machine this was written on defines BYTE_ORDER
* appropriately by including <sys/types.h> (which in turn includes
* <machine/endian.h> where the appropriate definitions are actually
* made).
*/
#if !defined(BYTE_ORDER) || \
(BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
# error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
#endif
/* SHA-256/384/512 Various Length Definitions */
/* NOTE: Most of these are in sha2.h */
#define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8)
#define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16)
#define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16)
/* Macro for incrementally adding the unsigned 64-bit integer n to the
* unsigned 128-bit integer (represented using a two-element array of
* 64-bit words):
*/
#define ADDINC128(w,n) \
do \
{ \
(w)[0] += (uint64_t)(n); \
if ((w)[0] < (n)) \
{ \
(w)[1]++; \
} \
} \
while (0)
/* THE SIX LOGICAL FUNCTIONS */
/* Bit shifting and rotation (used by the six SHA-XYZ logical functions:
*
* NOTE: The naming of R and S appears backwards here (R is a SHIFT and
* S is a ROTATION) because the SHA-256/384/512 description document
* (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
* same "backwards" definition.
*/
/* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
#define R(b,x) ((x) >> (b))
/* 32-bit Rotate-right (used in SHA-256): */
#define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
/* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
#define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
/* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
#define CH(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
#define MAJ(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
/* Four of six logical functions used in SHA-256: */
#define SIGMA0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x)))
#define SIGMA1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x)))
#define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3, (x)))
#define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x)))
/* Four of six logical functions used in SHA-384 and SHA-512: */
#define SIGMA0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
#define SIGMA1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
#define sigma0_512(x) (S64(1, (x)) ^ S64( 8, (x)) ^ R(7, (x)))
#define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R(6, (x)))
/* INTERNAL FUNCTION PROTOTYPES */
/* NOTE: These should not be accessed directly from outside this
* library -- they are intended for private internal visibility/use
* only.
*/
void sha512last(FAR SHA2_CTX *);
void sha256transform(FAR uint32_t *, FAR const uint8_t *);
void sha512transform(FAR uint64_t *, FAR const uint8_t *);
/* SHA-XYZ INITIAL HASH VALUES AND CONSTANTS */
/* Hash constant words K for SHA-256: */
const static uint32_t K256[64] =
{
0x428a2f98ul, 0x71374491ul, 0xb5c0fbcful, 0xe9b5dba5ul,
0x3956c25bul, 0x59f111f1ul, 0x923f82a4ul, 0xab1c5ed5ul,
0xd807aa98ul, 0x12835b01ul, 0x243185beul, 0x550c7dc3ul,
0x72be5d74ul, 0x80deb1feul, 0x9bdc06a7ul, 0xc19bf174ul,
0xe49b69c1ul, 0xefbe4786ul, 0x0fc19dc6ul, 0x240ca1ccul,
0x2de92c6ful, 0x4a7484aaul, 0x5cb0a9dcul, 0x76f988daul,
0x983e5152ul, 0xa831c66dul, 0xb00327c8ul, 0xbf597fc7ul,
0xc6e00bf3ul, 0xd5a79147ul, 0x06ca6351ul, 0x14292967ul,
0x27b70a85ul, 0x2e1b2138ul, 0x4d2c6dfcul, 0x53380d13ul,
0x650a7354ul, 0x766a0abbul, 0x81c2c92eul, 0x92722c85ul,
0xa2bfe8a1ul, 0xa81a664bul, 0xc24b8b70ul, 0xc76c51a3ul,
0xd192e819ul, 0xd6990624ul, 0xf40e3585ul, 0x106aa070ul,
0x19a4c116ul, 0x1e376c08ul, 0x2748774cul, 0x34b0bcb5ul,
0x391c0cb3ul, 0x4ed8aa4aul, 0x5b9cca4ful, 0x682e6ff3ul,
0x748f82eeul, 0x78a5636ful, 0x84c87814ul, 0x8cc70208ul,
0x90befffaul, 0xa4506cebul, 0xbef9a3f7ul, 0xc67178f2ul
};
/* Initial hash value H for SHA-256: */
const static uint32_t sha256_initial_hash_value[8] =
{
0x6a09e667ul,
0xbb67ae85ul,
0x3c6ef372ul,
0xa54ff53aul,
0x510e527ful,
0x9b05688cul,
0x1f83d9abul,
0x5be0cd19ul
};
/* Hash constant words K for SHA-384 and SHA-512: */
const static uint64_t K512[80] =
{
0x428a2f98d728ae22ull, 0x7137449123ef65cdull,
0xb5c0fbcfec4d3b2full, 0xe9b5dba58189dbbcull,
0x3956c25bf348b538ull, 0x59f111f1b605d019ull,
0x923f82a4af194f9bull, 0xab1c5ed5da6d8118ull,
0xd807aa98a3030242ull, 0x12835b0145706fbeull,
0x243185be4ee4b28cull, 0x550c7dc3d5ffb4e2ull,
0x72be5d74f27b896full, 0x80deb1fe3b1696b1ull,
0x9bdc06a725c71235ull, 0xc19bf174cf692694ull,
0xe49b69c19ef14ad2ull, 0xefbe4786384f25e3ull,
0x0fc19dc68b8cd5b5ull, 0x240ca1cc77ac9c65ull,
0x2de92c6f592b0275ull, 0x4a7484aa6ea6e483ull,
0x5cb0a9dcbd41fbd4ull, 0x76f988da831153b5ull,
0x983e5152ee66dfabull, 0xa831c66d2db43210ull,
0xb00327c898fb213full, 0xbf597fc7beef0ee4ull,
0xc6e00bf33da88fc2ull, 0xd5a79147930aa725ull,
0x06ca6351e003826full, 0x142929670a0e6e70ull,
0x27b70a8546d22ffcull, 0x2e1b21385c26c926ull,
0x4d2c6dfc5ac42aedull, 0x53380d139d95b3dfull,
0x650a73548baf63deull, 0x766a0abb3c77b2a8ull,
0x81c2c92e47edaee6ull, 0x92722c851482353bull,
0xa2bfe8a14cf10364ull, 0xa81a664bbc423001ull,
0xc24b8b70d0f89791ull, 0xc76c51a30654be30ull,
0xd192e819d6ef5218ull, 0xd69906245565a910ull,
0xf40e35855771202aull, 0x106aa07032bbd1b8ull,
0x19a4c116b8d2d0c8ull, 0x1e376c085141ab53ull,
0x2748774cdf8eeb99ull, 0x34b0bcb5e19b48a8ull,
0x391c0cb3c5c95a63ull, 0x4ed8aa4ae3418acbull,
0x5b9cca4f7763e373ull, 0x682e6ff3d6b2b8a3ull,
0x748f82ee5defb2fcull, 0x78a5636f43172f60ull,
0x84c87814a1f0ab72ull, 0x8cc702081a6439ecull,
0x90befffa23631e28ull, 0xa4506cebde82bde9ull,
0xbef9a3f7b2c67915ull, 0xc67178f2e372532bull,
0xca273eceea26619cull, 0xd186b8c721c0c207ull,
0xeada7dd6cde0eb1eull, 0xf57d4f7fee6ed178ull,
0x06f067aa72176fbaull, 0x0a637dc5a2c898a6ull,
0x113f9804bef90daeull, 0x1b710b35131c471bull,
0x28db77f523047d84ull, 0x32caab7b40c72493ull,
0x3c9ebe0a15c9bebcull, 0x431d67c49c100d4cull,
0x4cc5d4becb3e42b6ull, 0x597f299cfc657e2aull,
0x5fcb6fab3ad6faecull, 0x6c44198c4a475817ull
};
/* Initial hash value H for SHA-384 */
const static uint64_t sha384_initial_hash_value[8] =
{
0xcbbb9d5dc1059ed8ull,
0x629a292a367cd507ull,
0x9159015a3070dd17ull,
0x152fecd8f70e5939ull,
0x67332667ffc00b31ull,
0x8eb44a8768581511ull,
0xdb0c2e0d64f98fa7ull,
0x47b5481dbefa4fa4ull
};
/* Initial hash value H for SHA-512 */
const static uint64_t sha512_initial_hash_value[8] =
{
0x6a09e667f3bcc908ull,
0xbb67ae8584caa73bull,
0x3c6ef372fe94f82bull,
0xa54ff53a5f1d36f1ull,
0x510e527fade682d1ull,
0x9b05688c2b3e6c1full,
0x1f83d9abfb41bd6bull,
0x5be0cd19137e2179ull
};
/****************************************************************************
* Public Functions
****************************************************************************/
/* SHA-256: */
void sha256init(FAR SHA2_CTX *context)
{
memcpy(context->state.st32,
sha256_initial_hash_value,
SHA256_DIGEST_LENGTH);
memset(context->buffer, 0, SHA256_BLOCK_LENGTH);
context->bitcount[0] = 0;
}
#ifdef SHA2_UNROLL_TRANSFORM
/* Unrolled SHA-256 round macros: */
#define ROUND256_0_TO_15(a, b, c, d, e, f, g, h) \
do \
{ \
W256[j] = (uint32_t)data[3] | ((uint32_t)data[2] << 8) | \
((uint32_t)data[1] << 16) | ((uint32_t)data[0] << 24); \
data += 4; \
T1 = (h) + SIGMA1_256((e)) + \
CH((e), (f), (g)) + K256[j] + W256[j]; \
(d) += T1; \
(h) = T1 + SIGMA0_256((a)) + MAJ((a), (b), (c)); \
j++; \
} \
while (0)
#define ROUND256(a, b, c, d, e, f, g, h) \
do \
{ \
s0 = W256[(j + 1) & 0x0f]; \
s0 = sigma0_256(s0); \
s1 = W256[(j+14)&0x0f]; \
s1 = sigma1_256(s1); \
T1 = (h) + SIGMA1_256((e)) + CH((e), (f), (g)) + K256[j] + \
(W256[j & 0x0f] += s1 + W256[(j + 9) & 0x0f] + s0); \
(d) += T1; \
(h) = T1 + SIGMA0_256((a)) + MAJ((a), (b), (c)); \
j++; \
} \
while(0)
void sha256transform(FAR uint32_t *state, FAR const uint8_t *data)
{
uint32_t a;
uint32_t b;
uint32_t c;
uint32_t d;
uint32_t e;
uint32_t f;
uint32_t g;
uint32_t h;
uint32_t s0;
uint32_t s1;
uint32_t T1;
uint32_t W256[16];
int j;
/* Initialize registers with the prev. intermediate value */
a = state[0];
b = state[1];
c = state[2];
d = state[3];
e = state[4];
f = state[5];
g = state[6];
h = state[7];
j = 0;
do
{
/* Rounds 0 to 15 (unrolled): */
ROUND256_0_TO_15(a, b, c, d, e, f, g, h);
ROUND256_0_TO_15(h, a, b, c, d, e, f, g);
ROUND256_0_TO_15(g, h, a, b, c, d, e, f);
ROUND256_0_TO_15(f, g, h, a, b, c, d, e);
ROUND256_0_TO_15(e, f, g, h, a, b, c, d);
ROUND256_0_TO_15(d, e, f, g, h, a, b, c);
ROUND256_0_TO_15(c, d, e, f, g, h, a, b);
ROUND256_0_TO_15(b, c, d, e, f, g, h, a);
}
while (j < 16);
/* Now for the remaining rounds to 64: */
do
{
ROUND256(a, b, c, d, e, f, g, h);
ROUND256(h, a, b, c, d, e, f, g);
ROUND256(g, h, a, b, c, d, e, f);
ROUND256(f, g, h, a, b, c, d, e);
ROUND256(e, f, g, h, a, b, c, d);
ROUND256(d, e, f, g, h, a, b, c);
ROUND256(c, d, e, f, g, h, a, b);
ROUND256(b, c, d, e, f, g, h, a);
}
while (j < 64);
/* Compute the current intermediate hash value */
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
state[4] += e;
state[5] += f;
state[6] += g;
state[7] += h;
/* Clean up */
a = b = c = d = e = f = g = h = T1 = 0;
}
#else /* SHA2_UNROLL_TRANSFORM */
void sha256transform(FAR uint32_t *state, FAR const uint8_t *data)
{
uint32_t a;
uint32_t b;
uint32_t c;
uint32_t d;
uint32_t e;
uint32_t f;
uint32_t g;
uint32_t h;
uint32_t s0;
uint32_t s1;
uint32_t T1;
uint32_t T2;
uint32_t W256[16];
int j;
/* Initialize registers with the prev. intermediate value */
a = state[0];
b = state[1];
c = state[2];
d = state[3];
e = state[4];
f = state[5];
g = state[6];
h = state[7];
j = 0;
do
{
W256[j] = (uint32_t)data[3] | ((uint32_t)data[2] << 8) |
((uint32_t)data[1] << 16) | ((uint32_t)data[0] << 24);
data += 4;
/* Apply the SHA-256 compression function to update a..h */
T1 = h + SIGMA1_256(e) + CH(e, f, g) + K256[j] + W256[j];
T2 = SIGMA0_256(a) + MAJ(a, b, c);
h = g;
g = f;
f = e;
e = d + T1;
d = c;
c = b;
b = a;
a = T1 + T2;
j++;
}
while (j < 16);
do
{
/* Part of the message block expansion: */
s0 = W256[(j + 1) & 0x0f];
s0 = sigma0_256(s0);
s1 = W256[(j + 14) & 0x0f];
s1 = sigma1_256(s1);
/* Apply the SHA-256 compression function to update a..h */
T1 = h + SIGMA1_256(e) + CH(e, f, g) + K256[j] +
(W256[j & 0x0f] += s1 + W256[(j + 9) & 0x0f] + s0);
T2 = SIGMA0_256(a) + MAJ(a, b, c);
h = g;
g = f;
f = e;
e = d + T1;
d = c;
c = b;
b = a;
a = T1 + T2;
j++;
}
while (j < 64);
/* Compute the current intermediate hash value */
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
state[4] += e;
state[5] += f;
state[6] += g;
state[7] += h;
/* Clean up */
a = b = c = d = e = f = g = h = T1 = T2 = 0;
}
#endif /* SHA2_UNROLL_TRANSFORM */
void sha256update(FAR SHA2_CTX *context,
FAR const void *dataptr,
size_t len)
{
FAR const uint8_t *data = dataptr;
size_t freespace;
size_t usedspace;
/* Calling with no data is valid (we do nothing) */
if (len == 0)
{
return;
}
usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH;
if (usedspace > 0)
{
/* Calculate how much free space is available in the buffer */
freespace = SHA256_BLOCK_LENGTH - usedspace;
if (len >= freespace)
{
/* Fill the buffer completely and process it */
memcpy(&context->buffer[usedspace], data, freespace);
context->bitcount[0] += freespace << 3;
len -= freespace;
data += freespace;
sha256transform(context->state.st32, context->buffer);
}
else
{
/* The buffer is not yet full */
memcpy(&context->buffer[usedspace], data, len);
context->bitcount[0] += len << 3;
/* Clean up: */
usedspace = freespace = 0;
return;
}
}
while (len >= SHA256_BLOCK_LENGTH)
{
/* Process as many complete blocks as we can */
sha256transform(context->state.st32, data);
context->bitcount[0] += SHA256_BLOCK_LENGTH << 3;
len -= SHA256_BLOCK_LENGTH;
data += SHA256_BLOCK_LENGTH;
}
if (len > 0)
{
/* There's left-overs, so save 'em */
memcpy(context->buffer, data, len);
context->bitcount[0] += len << 3;
}
/* Clean up: */
usedspace = freespace = 0;
}
void sha256final(FAR uint8_t *digest, FAR SHA2_CTX *context)
{
unsigned int usedspace;
usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH;
#if BYTE_ORDER == LITTLE_ENDIAN
/* Convert FROM host byte order */
context->bitcount[0] = swap64(context->bitcount[0]);
#endif
if (usedspace > 0)
{
/* Begin padding with a 1 bit: */
context->buffer[usedspace++] = 0x80;
if (usedspace <= SHA256_SHORT_BLOCK_LENGTH)
{
/* Set-up for the last transform: */
memset(&context->buffer[usedspace], 0,
SHA256_SHORT_BLOCK_LENGTH - usedspace);
}
else
{
if (usedspace < SHA256_BLOCK_LENGTH)
{
memset(&context->buffer[usedspace], 0,
SHA256_BLOCK_LENGTH - usedspace);
}
/* Do second-to-last transform: */
sha256transform(context->state.st32, context->buffer);
/* And set-up for the last transform: */
memset(context->buffer, 0,
SHA256_SHORT_BLOCK_LENGTH);
}
}
else
{
/* Set-up for the last transform: */
memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH);
/* Begin padding with a 1 bit: */
*context->buffer = 0x80;
}
/* Set the bit count: */
*(FAR uint64_t *)&context->buffer[SHA256_SHORT_BLOCK_LENGTH] =
context->bitcount[0];
/* Final transform: */
sha256transform(context->state.st32, context->buffer);
#if BYTE_ORDER == LITTLE_ENDIAN
{
/* Convert TO host byte order */
int j;
for (j = 0; j < 8; j++)
{
context->state.st32[j] = swap32(context->state.st32[j]);
}
}
#endif
memcpy(digest, context->state.st32, SHA256_DIGEST_LENGTH);
/* Clean up state data: */
explicit_bzero(context, sizeof(*context));
usedspace = 0;
}
/* SHA-512: */
void sha512init(FAR SHA2_CTX *context)
{
memcpy(context->state.st64, sha512_initial_hash_value,
SHA512_DIGEST_LENGTH);
memset(context->buffer, 0, SHA512_BLOCK_LENGTH);
context->bitcount[0] = context->bitcount[1] = 0;
}
#ifdef SHA2_UNROLL_TRANSFORM
/* Unrolled SHA-512 round macros: */
#define ROUND512_0_TO_15(a, b, c, d, e, f, g, h) \
do \
{ \
W512[j] = (uint64_t)data[7] | ((uint64_t)data[6] << 8) | \
((uint64_t)data[5] << 16) | ((uint64_t)data[4] << 24) | \
((uint64_t)data[3] << 32) | ((uint64_t)data[2] << 40) | \
((uint64_t)data[1] << 48) | ((uint64_t)data[0] << 56); \
data += 8; \
T1 = (h) + SIGMA1_512((e)) + CH((e), (f), (g)) + K512[j] + W512[j]; \
(d) += T1; \
(h) = T1 + SIGMA0_512((a)) + MAJ((a), (b), (c)); \
j++; \
} \
while (0)
#define ROUND512(a, b, c, d, e, f, g, h) \
do \
{ \
s0 = W512[(j + 1) & 0x0f]; \
s0 = sigma0_512(s0); \
s1 = W512[(j + 14) & 0x0f]; \
s1 = sigma1_512(s1); \
T1 = (h) + SIGMA1_512((e)) + CH((e), (f), (g)) + K512[j] + \
(W512[j & 0x0f] += s1 + W512[(j +9 ) & 0x0f] + s0); \
(d) += T1; \
(h) = T1 + SIGMA0_512((a)) + MAJ((a), (b), (c)); \
j++; \
} \
while(0)
void sha512transform(FAR uint64_t *state, FAR const uint8_t *data)
{
uint64_t a;
uint64_t b;
uint64_t c;
uint64_t d;
uint64_t e;
uint64_t f;
uint64_t g;
uint64_t h;
uint64_t s0;
uint64_t s1;
uint64_t T1;
uint64_t W512[16];
int j;
/* Initialize registers with the prev. intermediate value */
a = state[0];
b = state[1];
c = state[2];
d = state[3];
e = state[4];
f = state[5];
g = state[6];
h = state[7];
j = 0;
do
{
ROUND512_0_TO_15(a, b, c, d, e, f, g, h);
ROUND512_0_TO_15(h, a, b, c, d, e, f, g);
ROUND512_0_TO_15(g, h, a, b, c, d, e, f);
ROUND512_0_TO_15(f, g, h, a, b, c, d, e);
ROUND512_0_TO_15(e, f, g, h, a, b, c, d);
ROUND512_0_TO_15(d, e, f, g, h, a, b, c);
ROUND512_0_TO_15(c, d, e, f, g, h, a, b);
ROUND512_0_TO_15(b, c, d, e, f, g, h, a);
}
while (j < 16);
/* Now for the remaining rounds up to 79: */
do
{
ROUND512(a, b, c, d, e, f, g, h);
ROUND512(h, a, b, c, d, e, f, g);
ROUND512(g, h, a, b, c, d, e, f);
ROUND512(f, g, h, a, b, c, d, e);
ROUND512(e, f, g, h, a, b, c, d);
ROUND512(d, e, f, g, h, a, b, c);
ROUND512(c, d, e, f, g, h, a, b);
ROUND512(b, c, d, e, f, g, h, a);
}
while (j < 80);
/* Compute the current intermediate hash value */
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
state[4] += e;
state[5] += f;
state[6] += g;
state[7] += h;
/* Clean up */
a = b = c = d = e = f = g = h = T1 = 0;
}
#else /* SHA2_UNROLL_TRANSFORM */
void sha512transform(FAR uint64_t *state, FAR const uint8_t *data)
{
uint64_t a;
uint64_t b;
uint64_t c;
uint64_t d;
uint64_t e;
uint64_t f;
uint64_t g;
uint64_t h;
uint64_t s0;
uint64_t s1;
uint64_t T1;
uint64_t T2;
uint64_t W512[16];
int j;
/* Initialize registers with the prev. intermediate value */
a = state[0];
b = state[1];
c = state[2];
d = state[3];
e = state[4];
f = state[5];
g = state[6];
h = state[7];
j = 0;
do
{
W512[j] = (uint64_t)data[7] | ((uint64_t)data[6] << 8) |
((uint64_t)data[5] << 16) | ((uint64_t)data[4] << 24) |
((uint64_t)data[3] << 32) | ((uint64_t)data[2] << 40) |
((uint64_t)data[1] << 48) | ((uint64_t)data[0] << 56);
data += 8;
/* Apply the SHA-512 compression function to update a..h */
T1 = h + SIGMA1_512(e) + CH(e, f, g) + K512[j] + W512[j];
T2 = SIGMA0_512(a) + MAJ(a, b, c);
h = g;
g = f;
f = e;
e = d + T1;
d = c;
c = b;
b = a;
a = T1 + T2;
j++;
}
while (j < 16);
do
{
/* Part of the message block expansion: */
s0 = W512[(j + 1) & 0x0f];
s0 = sigma0_512(s0);
s1 = W512[(j + 14) & 0x0f];
s1 = sigma1_512(s1);
/* Apply the SHA-512 compression function to update a..h */
T1 = h + SIGMA1_512(e) + CH(e, f, g) + K512[j] +
(W512[j & 0x0f] += s1 + W512[(j + 9) & 0x0f] + s0);
T2 = SIGMA0_512(a) + MAJ(a, b, c);
h = g;
g = f;
f = e;
e = d + T1;
d = c;
c = b;
b = a;
a = T1 + T2;
j++;
}
while (j < 80);
/* Compute the current intermediate hash value */
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
state[4] += e;
state[5] += f;
state[6] += g;
state[7] += h;
/* Clean up */
a = b = c = d = e = f = g = h = T1 = T2 = 0;
}
#endif /* SHA2_UNROLL_TRANSFORM */
void sha512update(FAR SHA2_CTX *context, FAR const void *dataptr, size_t len)
{
FAR const uint8_t *data = dataptr;
size_t freespace;
size_t usedspace;
/* Calling with no data is valid (we do nothing) */
if (len == 0)
{
return;
}
usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
if (usedspace > 0)
{
/* Calculate how much free space is available in the buffer */
freespace = SHA512_BLOCK_LENGTH - usedspace;
if (len >= freespace)
{
/* Fill the buffer completely and process it */
memcpy(&context->buffer[usedspace], data, freespace);
ADDINC128(context->bitcount, freespace << 3);
len -= freespace;
data += freespace;
sha512transform(context->state.st64, context->buffer);
}
else
{
/* The buffer is not yet full */
memcpy(&context->buffer[usedspace], data, len);
ADDINC128(context->bitcount, len << 3);
/* Clean up: */
usedspace = freespace = 0;
return;
}
}
while (len >= SHA512_BLOCK_LENGTH)
{
/* Process as many complete blocks as we can */
sha512transform(context->state.st64, data);
ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
len -= SHA512_BLOCK_LENGTH;
data += SHA512_BLOCK_LENGTH;
}
if (len > 0)
{
/* There's left-overs, so save 'em */
memcpy(context->buffer, data, len);
ADDINC128(context->bitcount, len << 3);
}
/* Clean up: */
usedspace = freespace = 0;
}
void sha512last(FAR SHA2_CTX *context)
{
unsigned int usedspace;
usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
#if BYTE_ORDER == LITTLE_ENDIAN
/* Convert FROM host byte order */
context->bitcount[0] = swap64(context->bitcount[0]);
context->bitcount[1] = swap64(context->bitcount[1]);
#endif
if (usedspace > 0)
{
/* Begin padding with a 1 bit: */
context->buffer[usedspace++] = 0x80;
if (usedspace <= SHA512_SHORT_BLOCK_LENGTH)
{
/* Set-up for the last transform: */
memset(&context->buffer[usedspace], 0,
SHA512_SHORT_BLOCK_LENGTH - usedspace);
}
else
{
if (usedspace < SHA512_BLOCK_LENGTH)
{
memset(&context->buffer[usedspace], 0,
SHA512_BLOCK_LENGTH - usedspace);
}
/* Do second-to-last transform: */
sha512transform(context->state.st64, context->buffer);
/* And set-up for the last transform: */
memset(context->buffer, 0, SHA512_BLOCK_LENGTH - 2);
}
}
else
{
/* Prepare for final transform: */
memset(context->buffer, 0, SHA512_SHORT_BLOCK_LENGTH);
/* Begin padding with a 1 bit: */
*context->buffer = 0x80;
}
/* Store the length of input data (in bits): */
*(FAR uint64_t *)&context->buffer[SHA512_SHORT_BLOCK_LENGTH] =
context->bitcount[1];
*(FAR uint64_t *)&context->buffer[SHA512_SHORT_BLOCK_LENGTH + 8] =
context->bitcount[0];
/* Final transform: */
sha512transform(context->state.st64, context->buffer);
}
void sha512final(FAR uint8_t *digest, FAR SHA2_CTX *context)
{
sha512last(context);
/* Save the hash data for output: */
#if BYTE_ORDER == LITTLE_ENDIAN
{
/* Convert TO host byte order */
int j;
for (j = 0; j < 8; j++)
{
context->state.st64[j] = swap64(context->state.st64[j]);
}
}
#endif
memcpy(digest, context->state.st64, SHA512_DIGEST_LENGTH);
/* Zero out state data */
explicit_bzero(context, sizeof(*context));
}
/* SHA-384: */
void sha384init(FAR SHA2_CTX *context)
{
memcpy(context->state.st64, sha384_initial_hash_value,
SHA512_DIGEST_LENGTH);
memset(context->buffer, 0, SHA384_BLOCK_LENGTH);
context->bitcount[0] = context->bitcount[1] = 0;
}
void sha384update(FAR SHA2_CTX *context, FAR const void *data, size_t len)
{
sha512update(context, data, len);
}
void sha384final(FAR uint8_t *digest, FAR SHA2_CTX *context)
{
sha512last(context);
/* Save the hash data for output: */
#if BYTE_ORDER == LITTLE_ENDIAN
{
/* Convert TO host byte order */
int j;
for (j = 0; j < 6; j++)
{
context->state.st64[j] = swap64(context->state.st64[j]);
}
}
#endif
memcpy(digest, context->state.st64, SHA384_DIGEST_LENGTH);
/* Zero out state data */
explicit_bzero(context, sizeof(*context));
}