incubator-nuttx/mm/mm_heap/mm.h

357 lines
11 KiB
C

/****************************************************************************
* mm/mm_heap/mm.h
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership. The
* ASF licenses this file to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance with the
* License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
****************************************************************************/
#ifndef __MM_MM_HEAP_MM_H
#define __MM_MM_HEAP_MM_H
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <nuttx/mutex.h>
#include <nuttx/sched.h>
#include <nuttx/fs/procfs.h>
#include <nuttx/lib/math32.h>
#include <nuttx/mm/mempool.h>
#include <assert.h>
#include <sys/types.h>
#include <stdbool.h>
#include <string.h>
#include <unistd.h>
/****************************************************************************
* Pre-processor Definitions
****************************************************************************/
/* Configuration ************************************************************/
/* Chunk Header Definitions *************************************************/
/* These definitions define the characteristics of the allocator:
*
* MM_MIN_SHIFT is used to define MM_MIN_CHUNK.
* MM_MIN_CHUNK - is the smallest physical chunk that can be allocated.
* It must be at least as large as sizeof(struct mm_freenode_s). Larger
* values may improve performance slightly, but will waste memory due to
* quantization losses.
*
* MM_MAX_SHIFT is used to define MM_MAX_CHUNK
* MM_MAX_CHUNK is the largest, contiguous chunk of memory that can be
* allocated. It can range from 16-bytes to 4Gb. Larger values of
* MM_MAX_SHIFT can cause larger data structure sizes and, perhaps,
* minor performance losses.
*/
#define MM_MIN_SHIFT LOG2_CEIL(sizeof(struct mm_freenode_s))
#if defined(CONFIG_MM_SMALL) && UINTPTR_MAX <= UINT32_MAX
# define MM_MAX_SHIFT (15) /* 32 Kb */
#else
# define MM_MAX_SHIFT (22) /* 4 Mb */
#endif
#if CONFIG_MM_BACKTRACE == 0
# define MM_ADD_BACKTRACE(heap, ptr) \
do \
{ \
FAR struct mm_allocnode_s *tmp = (FAR struct mm_allocnode_s *)(ptr); \
tmp->pid = _SCHED_GETTID(); \
tmp->seqno = g_mm_seqno++; \
} \
while (0)
#elif CONFIG_MM_BACKTRACE > 0
# define MM_ADD_BACKTRACE(heap, ptr) \
do \
{ \
FAR struct mm_allocnode_s *tmp = (FAR struct mm_allocnode_s *)(ptr); \
FAR struct tcb_s *tcb; \
tmp->pid = _SCHED_GETTID(); \
tcb = nxsched_get_tcb(tmp->pid); \
if ((heap)->mm_procfs.backtrace || (tcb && tcb->flags & TCB_FLAG_HEAP_DUMP)) \
{ \
int n = sched_backtrace(tmp->pid, tmp->backtrace, CONFIG_MM_BACKTRACE, \
CONFIG_MM_BACKTRACE_SKIP); \
if (n < CONFIG_MM_BACKTRACE) \
{ \
tmp->backtrace[n] = NULL; \
} \
} \
else \
{ \
tmp->backtrace[0] = NULL; \
} \
tmp->seqno = g_mm_seqno++; \
} \
while (0)
#else
# define MM_ADD_BACKTRACE(heap, ptr)
#endif
/* All other definitions derive from these two */
#define MM_MIN_CHUNK (1 << MM_MIN_SHIFT)
#define MM_MAX_CHUNK (1 << MM_MAX_SHIFT)
#define MM_NNODES (MM_MAX_SHIFT - MM_MIN_SHIFT + 1)
#if CONFIG_MM_DEFAULT_ALIGNMENT == 0
# define MM_ALIGN (2 * sizeof(uintptr_t))
#else
# define MM_ALIGN CONFIG_MM_DEFAULT_ALIGNMENT
#endif
#define MM_GRAN_MASK (MM_ALIGN - 1)
#define MM_ALIGN_UP(a) (((a) + MM_GRAN_MASK) & ~MM_GRAN_MASK)
#define MM_ALIGN_DOWN(a) ((a) & ~MM_GRAN_MASK)
/* Due to alignment, the lowest two bits of valid chunk size are always
* zero, thus the two bits are reused to depict allocation status: bit
* 0 depicts the allocation state of current chunk, and bit 1 depicts that
* of the physically preceding chunk.
*/
#define MM_ALLOC_BIT 0x1
#define MM_PREVFREE_BIT 0x2
#define MM_MASK_BIT (MM_ALLOC_BIT | MM_PREVFREE_BIT)
#ifdef CONFIG_MM_SMALL
# define MMSIZE_MAX UINT16_MAX
#else
# define MMSIZE_MAX UINT32_MAX
#endif
/* What is the size of the allocnode? */
#define MM_SIZEOF_ALLOCNODE sizeof(struct mm_allocnode_s)
/* What is the overhead of the allocnode
* Remove the space of preceding field since it locates at the end of the
* previous freenode
*/
#define MM_ALLOCNODE_OVERHEAD (MM_SIZEOF_ALLOCNODE - sizeof(mmsize_t))
/* Get the node size */
#define MM_SIZEOF_NODE(node) ((node)->size & (~MM_MASK_BIT))
/* Check if node/prenode is free */
#define MM_NODE_IS_ALLOC(node) (((node)->size & MM_ALLOC_BIT) != 0)
#define MM_NODE_IS_FREE(node) (((node)->size & MM_ALLOC_BIT) == 0)
#define MM_PREVNODE_IS_ALLOC(node) (((node)->size & MM_PREVFREE_BIT) == 0)
#define MM_PREVNODE_IS_FREE(node) (((node)->size & MM_PREVFREE_BIT) != 0)
/****************************************************************************
* Public Types
****************************************************************************/
/* Determines the size of the chunk size/offset type */
#ifdef CONFIG_MM_SMALL
typedef uint16_t mmsize_t;
#else
typedef size_t mmsize_t;
#endif
/* This describes an allocated chunk */
struct mm_allocnode_s
{
mmsize_t preceding; /* Physical preceding chunk size */
mmsize_t size; /* Size of this chunk */
#if CONFIG_MM_BACKTRACE >= 0
pid_t pid; /* The pid for caller */
unsigned long seqno; /* The sequence of memory malloc */
# if CONFIG_MM_BACKTRACE > 0
FAR void *backtrace[CONFIG_MM_BACKTRACE]; /* The backtrace buffer for caller */
# endif
#endif
};
/* This describes a free chunk */
struct mm_freenode_s
{
mmsize_t preceding; /* Physical preceding chunk size */
mmsize_t size; /* Size of this chunk */
#if CONFIG_MM_BACKTRACE >= 0
pid_t pid; /* The pid for caller */
unsigned long seqno; /* The sequence of memory malloc */
# if CONFIG_MM_BACKTRACE > 0
FAR void *backtrace[CONFIG_MM_BACKTRACE]; /* The backtrace buffer for caller */
# endif
#endif
FAR struct mm_freenode_s *flink; /* Supports a doubly linked list */
FAR struct mm_freenode_s *blink;
};
static_assert(MM_SIZEOF_ALLOCNODE <= MM_MIN_CHUNK,
"Error size for struct mm_allocnode_s\n");
static_assert(MM_ALIGN >= sizeof(uintptr_t) &&
(MM_ALIGN & MM_GRAN_MASK) == 0,
"Error memory alignment\n");
struct mm_delaynode_s
{
FAR struct mm_delaynode_s *flink;
};
/* This describes one heap (possibly with multiple regions) */
struct mm_heap_s
{
/* Mutex for controling access to this heap */
mutex_t mm_lock;
/* This is the size of the heap provided to mm */
size_t mm_heapsize;
/* This is the heap maximum used memory size */
size_t mm_maxused;
/* This is the current used size of the heap */
size_t mm_curused;
/* The first and last allocated nodes of each region */
FAR struct mm_allocnode_s *mm_heapstart[CONFIG_MM_REGIONS];
FAR struct mm_allocnode_s *mm_heapend[CONFIG_MM_REGIONS];
#if CONFIG_MM_REGIONS > 1
int mm_nregions;
#endif
/* All free nodes are maintained in a doubly linked list. This
* array provides some hooks into the list at various points to
* speed up searching of free nodes.
*/
struct mm_freenode_s mm_nodelist[MM_NNODES];
/* Free delay list, as sometimes we can't do free immdiately. */
FAR struct mm_delaynode_s *mm_delaylist[CONFIG_SMP_NCPUS];
#if CONFIG_MM_FREE_DELAYCOUNT_MAX > 0
size_t mm_delaycount[CONFIG_SMP_NCPUS];
#endif
/* The is a multiple mempool of the heap */
#ifdef CONFIG_MM_HEAP_MEMPOOL
size_t mm_threshold;
FAR struct mempool_multiple_s *mm_mpool;
#endif
#if defined(CONFIG_FS_PROCFS) && !defined(CONFIG_FS_PROCFS_EXCLUDE_MEMINFO)
struct procfs_meminfo_entry_s mm_procfs;
#endif
};
/* This describes the callback for mm_foreach */
typedef CODE void (*mm_node_handler_t)(FAR struct mm_allocnode_s *node,
FAR void *arg);
/****************************************************************************
* Public Function Prototypes
****************************************************************************/
/* Functions contained in mm_lock.c *****************************************/
int mm_lock(FAR struct mm_heap_s *heap);
void mm_unlock(FAR struct mm_heap_s *heap);
/* Functions contained in mm_shrinkchunk.c **********************************/
void mm_shrinkchunk(FAR struct mm_heap_s *heap,
FAR struct mm_allocnode_s *node, size_t size);
/* Functions contained in mm_foreach.c **************************************/
void mm_foreach(FAR struct mm_heap_s *heap, mm_node_handler_t handler,
FAR void *arg);
/* Functions contained in mm_free.c *****************************************/
void mm_delayfree(FAR struct mm_heap_s *heap, FAR void *mem, bool delay);
/****************************************************************************
* Inline Functions
****************************************************************************/
static inline_function int mm_size2ndx(size_t size)
{
DEBUGASSERT(size >= MM_MIN_CHUNK);
if (size >= MM_MAX_CHUNK)
{
return MM_NNODES - 1;
}
size >>= MM_MIN_SHIFT;
return flsl(size) - 1;
}
static inline_function void mm_addfreechunk(FAR struct mm_heap_s *heap,
FAR struct mm_freenode_s *node)
{
FAR struct mm_freenode_s *next;
FAR struct mm_freenode_s *prev;
size_t nodesize = MM_SIZEOF_NODE(node);
int ndx;
DEBUGASSERT(nodesize >= MM_MIN_CHUNK);
DEBUGASSERT(MM_NODE_IS_FREE(node));
/* Convert the size to a nodelist index */
ndx = mm_size2ndx(nodesize);
/* Now put the new node into the next */
for (prev = &heap->mm_nodelist[ndx],
next = heap->mm_nodelist[ndx].flink;
next && next->size && MM_SIZEOF_NODE(next) < nodesize;
prev = next, next = next->flink);
/* Does it go in mid next or at the end? */
prev->flink = node;
node->blink = prev;
node->flink = next;
if (next)
{
/* The new node goes between prev and next */
next->blink = node;
}
}
#endif /* __MM_MM_HEAP_MM_H */