216 lines
7.6 KiB
C
216 lines
7.6 KiB
C
/**************************************************************************
|
|
* pjrc.h
|
|
*
|
|
* Copyright (C) 2007 Gregory Nutt. All rights reserved.
|
|
* Author: Gregory Nutt <spudmonkey@racsa.co.cr>
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* 3. Neither the name Gregory Nutt nor the names of its contributors may be
|
|
* used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
|
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
**************************************************************************/
|
|
|
|
#ifndef __PJRC_H
|
|
#define __PJRC_H
|
|
|
|
/**************************************************************************
|
|
* Included Files
|
|
**************************************************************************/
|
|
|
|
#include <sys/types.h>
|
|
|
|
/**************************************************************************
|
|
* Public Definitions
|
|
**************************************************************************/
|
|
|
|
/**************************************************************************
|
|
* Public Types
|
|
**************************************************************************/
|
|
|
|
/**************************************************************************
|
|
* Public Variables
|
|
**************************************************************************/
|
|
|
|
/* Memory Map
|
|
*
|
|
* BEGIN END DESCRIPTION
|
|
* 0x0000 0x1fff CODE: ROM containg PAULMON2
|
|
* DATA: RAM for program variables
|
|
* 0x2000 0x7fff COMMON: RAM for program code or
|
|
* variables
|
|
* 0x8000 0xf7ff COMMON: FLASH for program code
|
|
* 0xf800 0xfeff COMMON: Peripherals
|
|
* 0xff00 0xffff COMMON: unused
|
|
*
|
|
* Program code may be loaded at the RAM location 0x2000-0x7fff
|
|
* for testing. If loaded into the FLASH location at
|
|
* 0x8000-0xf7ff, PAULMON2 will automatically write the program
|
|
* into flash. The program is configured in the RAM-based test
|
|
* configuration:
|
|
*/
|
|
|
|
#define RAM_BLOCK_START IRAM_SIZE
|
|
#define RAM_BLOCK_END 0x1fff
|
|
|
|
#define PROGRAM_BASE 0x2000
|
|
#define PROGRAM_END 0x7fff
|
|
|
|
#define FLASH_BASE 0x8000
|
|
#define FLASH_END 0xf7ff
|
|
|
|
/* Well-known entry points to access PAULMON2's built-in functions */
|
|
|
|
#define PM2_ENTRY_PHEX1 0x002e
|
|
#define PM2_ENTRY_COUT 0x0030
|
|
#define PM2_ENTRY_CIN 0x0032
|
|
#define PM2_ENTRY_PHEX 0x0034
|
|
#define PM2_ENTRY_PHEX16 0x0036
|
|
#define PM2_ENTRY_PSTR 0x0038
|
|
#define PM2_ENTRY_ESC 0x003e
|
|
#define PM2_ENTRY_UPPER 0x0040
|
|
#define PM2_ENTRY_PINT8U 0x004D
|
|
#define PM2_ENTRY_PINT8 0x0050
|
|
#define PM2_ENTRY_PINT16U 0x0053
|
|
#define PM2_ENTRY_NEWLINE 0x0048
|
|
#define PM2_ENTRY_PRGM 0x0059
|
|
#define PM2_ENTRY_ERBLOCK 0x0067
|
|
|
|
/* PAULMON2 captures all interrupt vectors in ROM but relays them
|
|
* through the following RAM addresses:
|
|
*/
|
|
|
|
#define PM2_VECTOR_BASE PROGRAM_BASE
|
|
#define PM2_VECTOR_EXTINT0 (PM2_VECTOR_BASE + 3)
|
|
#define PM2_VECTOR_TIMER0 (PM2_VECTOR_BASE + 11)
|
|
#define PM2_VECTOR_EXTINT1 (PM2_VECTOR_BASE + 19)
|
|
#define PM2_VECTOR_TIMER1 (PM2_VECTOR_BASE + 27)
|
|
#define PM2_VECTOR_UART (PM2_VECTOR_BASE + 35)
|
|
#define PM2_VECTOR_TIMER2 (PM2_VECTOR_BASE + 43)
|
|
|
|
/* Peripheral Mapping
|
|
*
|
|
* Begin End Peripheral Addr Acc Function
|
|
* F800 F8FF 82C55 (A, B, C) F800 R/W Port A
|
|
* F801 R/W Port B
|
|
* F802 R/W Port C
|
|
* F803 W Config A,B,C
|
|
* F900 F9FF 82C55 (D, E, F) F900 R/W Port D
|
|
* F901 R/W Port E (LEDs)
|
|
* F902 R/W Port F
|
|
* F903 W Config D,E,F
|
|
* FA00 FAFF User Expansion
|
|
* FB00 FBFF User Expansion
|
|
* FC00 FCFF User Expansion
|
|
* FD00 FDFF User Expansion
|
|
* FE00 FEFF LCD Port FE00 W Command Register
|
|
* FE01 R Status Register
|
|
* FE02 W Display or CGRAM Buffer
|
|
* FE03 R " " "" " " " "
|
|
*
|
|
* These are the memory-mapped locations used to access the two 82C55
|
|
* chips
|
|
*/
|
|
|
|
#ifndef __ASSEMBLY__
|
|
xdata at 0xF800 ubyte p82c55_port_a;
|
|
xdata at 0xF801 ubyte p82c55_port_b;
|
|
xdata at 0xF802 ubyte p82c55_port_c;
|
|
xdata at 0xF803 ubyte p82c55_abc_config;
|
|
xdata at 0xF900 ubyte p82c55_port_d;
|
|
xdata at 0xF901 ubyte p82c55_port_e;
|
|
xdata at 0xF902 ubyte p82c55_port_f;
|
|
xdata at 0xF903 ubyte p82c55_def_config;
|
|
#endif
|
|
|
|
/* LED (Port E) bit definitions */
|
|
|
|
#define LED_STARTED 0
|
|
#define LED_HEAPALLOCATE 1
|
|
#define LED_IRQSENABLED 2
|
|
#define LED_IDLE 3
|
|
#define LED_UNUSED2 4
|
|
#define LED_INIRQ 5
|
|
#define LED_ASSERTION 6
|
|
#define LED_PANIC 7
|
|
|
|
/* Registers. 8052 regiser definitions are provided in the SDCC header
|
|
* file 8052.h. However, a few SFR registers are missing from that
|
|
* file (they can be found in mcs51reg.h, but that file is too much
|
|
* when the following simple addtions do the job).
|
|
*/
|
|
|
|
#ifndef __ASSEMBLY__
|
|
sfr at 0xc9 T2MOD ;
|
|
#endif
|
|
|
|
/* Timing information.
|
|
*
|
|
* The PJRC board is based on a standard 87C52 CPU clocked at 22.1184 MHz.
|
|
* The CPU clock is divided by 12 to yield a clock frequency of 1.8432 MHz.
|
|
*/
|
|
|
|
#define CPU_CLOCK_HZ 22118400L
|
|
#define TIMER_CLOCK_HZ 1843200L
|
|
|
|
/* The 87C52 has three timers, timer 0, timer 1, and timer 2. On the PJRC
|
|
* board, timer 1 and 2 have dedicated functions. They provide baud support
|
|
* support for the boards two serial ports. Unfortunately, only timer 2
|
|
* can generate the accurate 100Hz timer desired by the OS.
|
|
*
|
|
* Timer 0 provides only a 8-bit auto-reload mode.
|
|
*/
|
|
|
|
#ifdef CONFIG_8052_TIMER2
|
|
|
|
/* To use timer 2 as the 100Hz system timer, we need to calculate a 16-bit
|
|
* reload value that results in 100Hz overflow interrupts. That value
|
|
* is given by:
|
|
*
|
|
* Timer ticks = TIMER_CLOCK_HZ / (desired ticks-per-second)
|
|
* = 18432
|
|
* Capture value = 0xffff - (Timer ticks)
|
|
* = 47103 = 0x67ff
|
|
*/
|
|
|
|
# define TIMER2_CAPTURE_LOW 0xff
|
|
# define TIMER2_CAPTURE_HIGH 0x67
|
|
|
|
#else
|
|
|
|
/* Timer 0, mode 0 can be used as a system timer. In that mode, the
|
|
* 1.8432 is further divided by 32. A single 8-bit value is incremented
|
|
* at 57600 Hz, which results in 225 Timer 0 overflow interrupts per
|
|
* second.
|
|
*/
|
|
|
|
#endif
|
|
|
|
/**************************************************************************
|
|
* Public Function Prototypes
|
|
**************************************************************************/
|
|
|
|
#endif /* __PJRC_H */
|