incubator-nuttx/arch/arm/include/armv6-m/irq.h

411 lines
11 KiB
C

/****************************************************************************
* arch/arm/include/armv6-m/irq.h
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership. The
* ASF licenses this file to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance with the
* License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
****************************************************************************/
/* This file should never be included directly but, rather, only indirectly
* through nuttx/irq.h
*/
#ifndef __ARCH_ARM_INCLUDE_ARMV6_M_IRQ_H
#define __ARCH_ARM_INCLUDE_ARMV6_M_IRQ_H
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <nuttx/irq.h>
#ifndef __ASSEMBLY__
# include <nuttx/compiler.h>
# include <stdint.h>
#endif
#include <arch/chip/chip.h>
/****************************************************************************
* Pre-processor Prototypes
****************************************************************************/
/* Configuration ************************************************************/
/* If this is a kernel build,
* how many nested system calls should we support?
*/
#ifndef CONFIG_SYS_NNEST
# define CONFIG_SYS_NNEST 2
#endif
/* IRQ Stack Frame Format ***************************************************
*
* The following additional registers are stored by the interrupt handling
* logic.
*/
#define REG_R13 (0) /* R13 = SP at time of interrupt */
#define REG_PRIMASK (1) /* PRIMASK */
#define REG_R4 (2) /* R4 */
#define REG_R5 (3) /* R5 */
#define REG_R6 (4) /* R6 */
#define REG_R7 (5) /* R7 */
#define REG_R8 (6) /* R8 */
#define REG_R9 (7) /* R9 */
#define REG_R10 (8) /* R10 */
#define REG_R11 (9) /* R11 */
#define REG_CONTROL (10) /* CONTROL */
#define REG_EXC_RETURN (11) /* EXC_RETURN */
#define SW_XCPT_REGS (12)
/* The total number of registers saved by software */
#define SW_XCPT_SIZE (4 * SW_XCPT_REGS)
/* On entry into an IRQ, the hardware automatically saves the following
* registers on the stack in this (address) order:
*/
#define REG_R0 (SW_XCPT_REGS+0) /* R0 */
#define REG_R1 (SW_XCPT_REGS+1) /* R1 */
#define REG_R2 (SW_XCPT_REGS+2) /* R2 */
#define REG_R3 (SW_XCPT_REGS+3) /* R3 */
#define REG_R12 (SW_XCPT_REGS+4) /* R12 */
#define REG_R14 (SW_XCPT_REGS+5) /* R14 = LR */
#define REG_R15 (SW_XCPT_REGS+6) /* R15 = PC */
#define REG_XPSR (SW_XCPT_REGS+7) /* xPSR */
#define HW_XCPT_REGS (8)
#define HW_XCPT_SIZE (4 * HW_XCPT_REGS)
#define XCPTCONTEXT_REGS (HW_XCPT_REGS + SW_XCPT_REGS)
#define XCPTCONTEXT_SIZE (4 * XCPTCONTEXT_REGS)
/* Alternate register names */
#define REG_A1 REG_R0
#define REG_A2 REG_R1
#define REG_A3 REG_R2
#define REG_A4 REG_R3
#define REG_V1 REG_R4
#define REG_V2 REG_R5
#define REG_V3 REG_R6
#define REG_V4 REG_R7
#define REG_V5 REG_R8
#define REG_V6 REG_R9
#define REG_V7 REG_R10
#define REG_SB REG_R9
#define REG_SL REG_R10
#define REG_FP REG_R7
#define REG_IP REG_R12
#define REG_SP REG_R13
#define REG_LR REG_R14
#define REG_PC REG_R15
/* The PIC register is usually R10. It can be R9 is stack checking is enabled
* or if the user changes it with -mpic-register on the GCC command line.
*/
#define REG_PIC REG_R10
/* CONTROL register */
#define CONTROL_FPCA (1 << 2) /* Bit 2: Floating-point context active */
#define CONTROL_SPSEL (1 << 1) /* Bit 1: Stack-pointer select */
#define CONTROL_NPRIV (1 << 0) /* Bit 0: Not privileged */
/****************************************************************************
* Public Types
****************************************************************************/
#ifndef __ASSEMBLY__
/* This structure represents the return state from a system call */
#ifdef CONFIG_LIB_SYSCALL
struct xcpt_syscall_s
{
uint32_t excreturn; /* The EXC_RETURN value */
uint32_t sysreturn; /* The return PC */
uint32_t ctrlreturn; /* The return CONTROL value */
};
#endif
/* The following structure is included in the TCB and defines the complete
* state of the thread.
*/
struct xcptcontext
{
/* These are saved copies of the context used during
* signal processing.
*/
uint32_t *saved_regs;
#ifdef CONFIG_BUILD_PROTECTED
/* This is the saved address to use when returning from a user-space
* signal handler.
*/
uint32_t sigreturn;
#endif
#ifdef CONFIG_LIB_SYSCALL
/* The following array holds the return address and the exc_return value
* needed to return from each nested system call.
*/
uint8_t nsyscalls;
struct xcpt_syscall_s syscall[CONFIG_SYS_NNEST];
#endif
/* Register save area with XCPTCONTEXT_SIZE, only valid when:
* 1.The task isn't running or
* 2.The task is interrupted
* otherwise task is running, and regs contain the stale value.
*/
uint32_t *regs;
};
/****************************************************************************
* Public Data
****************************************************************************/
/* g_current_regs[] holds a references to the current interrupt level
* register storage structure. If is non-NULL only during interrupt
* processing. Access to g_current_regs[] must be through the
* [get/set]_current_regs for portability.
*/
/* For the case of architectures with multiple CPUs, then there must be one
* such value for each processor that can receive an interrupt.
*/
extern volatile uint32_t *g_current_regs[CONFIG_SMP_NCPUS];
/****************************************************************************
* Inline functions
****************************************************************************/
/* Name: up_irq_save, up_irq_restore, and friends.
*
* NOTE: This function should never be called from application code and,
* as a general rule unless you really know what you are doing, this
* function should not be called directly from operation system code either:
* Typically, the wrapper functions, enter_critical_section() and
* leave_critical section(), are probably what you really want.
*/
/* Get/set the PRIMASK register */
static inline uint8_t getprimask(void) always_inline_function;
static inline uint8_t getprimask(void)
{
uint32_t primask;
__asm__ __volatile__
(
"\tmrs %0, primask\n"
: "=r" (primask)
:
: "memory");
return (uint8_t)primask;
}
static inline void setprimask(uint32_t primask) always_inline_function;
static inline void setprimask(uint32_t primask)
{
__asm__ __volatile__
(
"\tmsr primask, %0\n"
:
: "r" (primask)
: "memory");
}
/* Disable IRQs */
static inline void up_irq_disable(void) always_inline_function;
static inline void up_irq_disable(void)
{
__asm__ __volatile__ ("\tcpsid i\n");
}
/* Save the current primask state & disable IRQs */
static inline irqstate_t up_irq_save(void) always_inline_function;
static inline irqstate_t up_irq_save(void)
{
unsigned short primask;
/* Return the current value of primask register and set
* bit 0 of the primask register to disable interrupts
*/
__asm__ __volatile__
(
"\tmrs %0, primask\n"
"\tcpsid i\n"
: "=r" (primask)
:
: "memory");
return primask;
}
/* Enable IRQs */
static inline void up_irq_enable(void) always_inline_function;
static inline void up_irq_enable(void)
{
__asm__ __volatile__ ("\tcpsie i\n");
}
/* Restore saved primask state */
static inline void up_irq_restore(irqstate_t flags) always_inline_function;
static inline void up_irq_restore(irqstate_t flags)
{
/* If bit 0 of the primask is 0, then we need to restore
* interrupts.
*/
__asm__ __volatile__
(
"\tmsr primask, %0\n"
:
: "r" (flags)
: "memory");
}
/* Get/set IPSR */
static inline uint32_t getipsr(void) always_inline_function;
static inline uint32_t getipsr(void)
{
uint32_t ipsr;
__asm__ __volatile__
(
"\tmrs %0, ipsr\n"
: "=r" (ipsr)
:
: "memory");
return ipsr;
}
/* Get/set CONTROL */
static inline uint32_t getcontrol(void) always_inline_function;
static inline uint32_t getcontrol(void)
{
uint32_t control;
__asm__ __volatile__
(
"\tmrs %0, control\n"
: "=r" (control)
:
: "memory");
return control;
}
static inline void setcontrol(uint32_t control) always_inline_function;
static inline void setcontrol(uint32_t control)
{
__asm__ __volatile__
(
"\tmsr control, %0\n"
:
: "r" (control)
: "memory");
}
/****************************************************************************
* Name: up_cpu_index
*
* Description:
* Return the real core number regardless CONFIG_SMP setting
*
****************************************************************************/
#ifdef CONFIG_ARCH_HAVE_MULTICPU
int up_cpu_index(void) noinstrument_function;
#endif /* CONFIG_ARCH_HAVE_MULTICPU */
static inline_function uint32_t up_getsp(void)
{
register uint32_t sp;
__asm__ __volatile__
(
"mov %0, sp\n"
: "=r" (sp)
);
return sp;
}
noinstrument_function
static inline_function uint32_t *up_current_regs(void)
{
#ifdef CONFIG_SMP
return (uint32_t *)g_current_regs[up_cpu_index()];
#else
return (uint32_t *)g_current_regs[0];
#endif
}
noinstrument_function
static inline_function void up_set_current_regs(uint32_t *regs)
{
#ifdef CONFIG_SMP
g_current_regs[up_cpu_index()] = regs;
#else
g_current_regs[0] = regs;
#endif
}
noinstrument_function
static inline_function bool up_interrupt_context(void)
{
return getipsr() != 0;
}
/****************************************************************************
* Public Function Prototypes
****************************************************************************/
#ifdef __cplusplus
#define EXTERN extern "C"
extern "C"
{
#else
#define EXTERN extern
#endif
#undef EXTERN
#ifdef __cplusplus
}
#endif
#endif /* __ASSEMBLY__ */
#endif /* __ARCH_ARM_INCLUDE_ARMV6_M_IRQ_H */