README for the Espressif ESP32 Ethernet Kit
==============================================
The ESP32 is a dual-core system from Espressif with two Harvard
architecture Xtensa LX6 CPUs. All embedded memory, external memory and
peripherals are located on the data bus and/or the instruction bus of
these CPUs. With some minor exceptions, the address mapping of two CPUs
is symmetric, meaning they use the same addresses to access the same
memory. Multiple peripherals in the system can access embedded memory via
DMA.
The ESP32-Ethernet-Kit is an Ethernet-to-Wi-Fi development board that enables
Ethernet devices to be interconnected over Wi-Fi. At the same time, to provide
more flexible power supply options, the ESP32-Ethernet-Kit also supports power
over Ethernet (PoE).
Buttons and LEDs
================
Buttons
-------
There are two buttons labeled Boot and EN. The EN button is not available
to software. It pulls the chip enable line that doubles as a reset line.
The BOOT button is connected to IO0. On reset it is used as a strapping
pin to determine whether the chip boots normally or into the serial
bootloader. After reset, however, the BOOT button can be used for software
input.
LEDs
----
There are several on-board LEDs for that indicate the presence of power
and USB activity. None of these are available for use by software.
Ethernet
========
ESP32 has a 802.11 hardware MAC, so just connects to external PHY chip.
Due to the limited number of GPIOs in ESP32, it's recommended to use RMII to
connect to an external PHY chip. Current driver also only supports RMII option.
The RMII GPIO pins are fixed, but the SMI and functional GPIO pins are optional.
RMII GPIO pins are as following:
ESP32 GPIO PHY Chip GPIO
IO25 <--> RXD[0]
IO26 <--> RXD[1]
IO27 <--> CRS_DV
IO0 <--> REF_CLK
IO19 <--> TXD[0]
IO21 <--> TX_EN
IO22 <--> TXD[1]
SMI GPIO pins (default option) are as following:
ESP32 GPIO PHY Chip GPIO
IO18 <--> MDIO
IO23 <--> MDC
Functional GPIO pins(default option) are as following:
ESP32 GPIO PHY Chip GPIO
IO5 <--> Reset_N
Espressif has an official Ethernet development board:
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/hw-reference/esp32/get-started-ethernet-kit.html
Using QEMU:
==========
First follow the instructions at https://github.com/espressif/qemu/wiki to build QEMU.
Enable the ESP32_QEMU_IMAGE config found in "Board Selection -> ESP32 binary image for QEMU".
Download the bootloader and the partition table from https://github.com/espressif/esp-nuttx-bootloader/releases
and place them in a directory, say ../esp-bins.
Build and generate the QEMU image: `make ESPTOOL_BINDIR=../esp-bins`
A new image "esp32_qemu_image.bin" will be created. It can be run as:
~/PATH_TO_QEMU/qemu/build/xtensa-softmmu/qemu-system-xtensa -nographic \
-machine esp32 \
-drive file=esp32_qemu_image.bin,if=mtd,format=raw