incubator-nuttx/mm/tlsf/mm_tlsf.c

1697 lines
42 KiB
C

/****************************************************************************
* mm/tlsf/mm_tlsf.c
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership. The
* ASF licenses this file to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance with the
* License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <unistd.h>
#include <errno.h>
#include <assert.h>
#include <debug.h>
#include <execinfo.h>
#include <sched.h>
#include <stdio.h>
#include <string.h>
#include <sys/param.h>
#include <nuttx/arch.h>
#include <nuttx/fs/procfs.h>
#include <nuttx/mutex.h>
#include <nuttx/mm/mm.h>
#include <nuttx/mm/kasan.h>
#include <nuttx/mm/mempool.h>
#include <nuttx/sched_note.h>
#include "tlsf/tlsf.h"
/****************************************************************************
* Pre-processor Definitions
****************************************************************************/
#if CONFIG_MM_HEAP_MEMPOOL_THRESHOLD > 0
# define MEMPOOL_NPOOLS (CONFIG_MM_HEAP_MEMPOOL_THRESHOLD / tlsf_align_size())
#endif
/****************************************************************************
* Private Types
****************************************************************************/
struct mm_delaynode_s
{
FAR struct mm_delaynode_s *flink;
};
struct mm_heap_s
{
/* Mutually exclusive access to this data set is enforced with
* the following un-named mutex.
*/
mutex_t mm_lock;
/* This is the size of the heap provided to mm */
size_t mm_heapsize;
/* This is the heap maximum used memory size */
size_t mm_maxused;
/* This is the current used size of the heap */
size_t mm_curused;
/* This is the first and last of the heap */
FAR void *mm_heapstart[CONFIG_MM_REGIONS];
FAR void *mm_heapend[CONFIG_MM_REGIONS];
#if CONFIG_MM_REGIONS > 1
int mm_nregions;
#endif
tlsf_t mm_tlsf; /* The tlfs context */
/* The is a multiple mempool of the heap */
#ifdef CONFIG_MM_HEAP_MEMPOOL
size_t mm_threshold;
FAR struct mempool_multiple_s *mm_mpool;
#endif
/* Free delay list, for some situation can't do free immediately */
struct mm_delaynode_s *mm_delaylist[CONFIG_SMP_NCPUS];
#if CONFIG_MM_FREE_DELAYCOUNT_MAX > 0
size_t mm_delaycount[CONFIG_SMP_NCPUS];
#endif
#if defined(CONFIG_FS_PROCFS) && !defined(CONFIG_FS_PROCFS_EXCLUDE_MEMINFO)
struct procfs_meminfo_entry_s mm_procfs;
#endif
};
#if CONFIG_MM_BACKTRACE >= 0
struct memdump_backtrace_s
{
pid_t pid; /* The pid for caller */
unsigned long seqno; /* The sequence of memory malloc */
#if CONFIG_MM_BACKTRACE > 0
FAR void *backtrace[CONFIG_MM_BACKTRACE]; /* The backtrace buffer for caller */
#endif
};
#endif
struct mm_mallinfo_handler_s
{
FAR const struct malltask *task;
FAR struct mallinfo_task *info;
};
#if CONFIG_MM_HEAP_BIGGEST_COUNT > 0
struct mm_tlsf_node_s
{
FAR void *ptr;
size_t size;
};
#endif
struct mm_memdump_priv_s
{
FAR const struct mm_memdump_s *dump;
struct mallinfo_task info;
#if CONFIG_MM_HEAP_BIGGEST_COUNT > 0
struct mm_tlsf_node_s node[CONFIG_MM_HEAP_BIGGEST_COUNT];
size_t filled;
#endif
};
#ifdef CONFIG_MM_HEAP_MEMPOOL
static inline_function
void memdump_info_pool(FAR struct mm_memdump_priv_s *priv,
FAR struct mm_heap_s *heap)
{
priv->info = mempool_multiple_info_task(heap->mm_mpool, priv->dump);
}
static inline_function
void memdump_dump_pool(FAR struct mm_memdump_priv_s *priv,
FAR struct mm_heap_s *heap)
{
if (priv->info.aordblks > 0)
{
mempool_multiple_memdump(heap->mm_mpool, priv->dump);
}
}
#else
# define memdump_info_pool(priv,heap)
# define memdump_dump_pool(priv,heap)
#endif
/****************************************************************************
* Private Function Prototypes
****************************************************************************/
static void mm_delayfree(struct mm_heap_s *heap, void *mem, bool delay);
/****************************************************************************
* Private Functions
****************************************************************************/
static void memdump_allocnode(FAR void *ptr, size_t size)
{
#if CONFIG_MM_BACKTRACE < 0
syslog(LOG_INFO, "%12zu%*p\n", size, BACKTRACE_PTR_FMT_WIDTH, ptr);
#elif CONFIG_MM_BACKTRACE == 0
FAR struct memdump_backtrace_s *buf =
ptr + size - sizeof(struct memdump_backtrace_s);
syslog(LOG_INFO, "%6d%12zu%12lu%*p\n",
buf->pid, size, buf->seqno, BACKTRACE_PTR_FMT_WIDTH, ptr);
#else
char tmp[BACKTRACE_BUFFER_SIZE(CONFIG_MM_BACKTRACE)];
FAR struct memdump_backtrace_s *buf =
ptr + size - sizeof(struct memdump_backtrace_s);
backtrace_format(tmp, sizeof(tmp), buf->backtrace,
CONFIG_MM_BACKTRACE);
syslog(LOG_INFO, "%6d%12zu%12lu%*p %s\n",
buf->pid, size, buf->seqno, BACKTRACE_PTR_FMT_WIDTH,
ptr, tmp);
#endif
}
#if CONFIG_MM_HEAP_BIGGEST_COUNT > 0
static int memdump_record_comare(FAR const void *a, FAR const void *b)
{
FAR struct mm_tlsf_node_s *node_a = (FAR struct mm_tlsf_node_s *)a;
FAR struct mm_tlsf_node_s *node_b = (FAR struct mm_tlsf_node_s *)b;
size_t size_a = node_a->size;
size_t size_b = node_b->size;
return size_a > size_b ? 1 : -1;
}
static void memdump_record_biggest(FAR struct mm_memdump_priv_s *priv,
FAR void *ptr, size_t size)
{
if (priv->filled < CONFIG_MM_HEAP_BIGGEST_COUNT)
{
priv->node[priv->filled].ptr = ptr;
priv->node[priv->filled].size = size;
priv->filled++;
}
else
{
if (size <= priv->node[0].size)
{
return;
}
priv->node[0].ptr = ptr;
priv->node[0].size = size;
}
if (priv->filled > 1)
{
qsort(priv->node, priv->filled, sizeof(struct mm_tlsf_node_s),
memdump_record_comare);
}
}
static void memdump_dump_biggestnodes(FAR struct mm_memdump_priv_s *priv)
{
size_t i;
for (i = 0; i < priv->filled; i++)
{
priv->info.uordblks += priv->node[i].size;
memdump_allocnode(priv->node[i].ptr, priv->node[i].size);
}
priv->info.aordblks = priv->filled;
}
#endif
#if CONFIG_MM_BACKTRACE >= 0
/****************************************************************************
* Name: memdump_backtrace
****************************************************************************/
static void memdump_backtrace(FAR struct mm_heap_s *heap,
FAR struct memdump_backtrace_s *buf)
{
# if CONFIG_MM_BACKTRACE > 0
FAR struct tcb_s *tcb;
# endif
buf->pid = _SCHED_GETTID();
buf->seqno = g_mm_seqno++;
# if CONFIG_MM_BACKTRACE > 0
tcb = nxsched_get_tcb(buf->pid);
if (heap->mm_procfs.backtrace ||
(tcb && tcb->flags & TCB_FLAG_HEAP_DUMP))
{
int ret = sched_backtrace(buf->pid, buf->backtrace,
CONFIG_MM_BACKTRACE,
CONFIG_MM_BACKTRACE_SKIP);
if (ret < CONFIG_MM_BACKTRACE)
{
buf->backtrace[ret] = NULL;
}
}
# endif
}
#endif
/****************************************************************************
* Name: add_delaylist
****************************************************************************/
static void add_delaylist(FAR struct mm_heap_s *heap, FAR void *mem)
{
#if defined(CONFIG_BUILD_FLAT) || defined(__KERNEL__)
FAR struct mm_delaynode_s *tmp = mem;
irqstate_t flags;
/* Delay the deallocation until a more appropriate time. */
flags = up_irq_save();
tmp->flink = heap->mm_delaylist[this_cpu()];
heap->mm_delaylist[this_cpu()] = tmp;
#if CONFIG_MM_FREE_DELAYCOUNT_MAX > 0
heap->mm_delaycount[this_cpu()]++;
#endif
up_irq_restore(flags);
#endif
}
/****************************************************************************
* Name: free_delaylist
****************************************************************************/
static bool free_delaylist(FAR struct mm_heap_s *heap, bool force)
{
bool ret = false;
#if defined(CONFIG_BUILD_FLAT) || defined(__KERNEL__)
FAR struct mm_delaynode_s *tmp;
irqstate_t flags;
/* Move the delay list to local */
flags = up_irq_save();
tmp = heap->mm_delaylist[this_cpu()];
#if CONFIG_MM_FREE_DELAYCOUNT_MAX > 0
if (tmp == NULL ||
(!force &&
heap->mm_delaycount[this_cpu()] < CONFIG_MM_FREE_DELAYCOUNT_MAX))
{
up_irq_restore(flags);
return false;
}
heap->mm_delaycount[this_cpu()] = 0;
#endif
heap->mm_delaylist[this_cpu()] = NULL;
up_irq_restore(flags);
/* Test if the delayed is empty */
ret = tmp != NULL;
while (tmp)
{
FAR void *address;
/* Get the first delayed deallocation */
address = tmp;
tmp = tmp->flink;
/* The address should always be non-NULL since that was checked in the
* 'while' condition above.
*/
mm_delayfree(heap, address, false);
}
#endif
return ret;
}
#if defined(CONFIG_MM_HEAP_MEMPOOL) && CONFIG_MM_BACKTRACE >= 0
/****************************************************************************
* Name: mempool_memalign
*
* Description:
* This function call mm_memalign and set mm_backtrace pid to free pid
* avoid repeated calculation.
****************************************************************************/
static FAR void *mempool_memalign(FAR void *arg, size_t alignment,
size_t size)
{
FAR struct memdump_backtrace_s *buf;
FAR void *ret;
ret = mm_memalign(arg, alignment, size);
if (ret)
{
buf = ret + mm_malloc_size(arg, ret);
buf->pid = PID_MM_MEMPOOL;
}
return ret;
}
#else
# define mempool_memalign mm_memalign
#endif
/****************************************************************************
* Name: mallinfo_handler
****************************************************************************/
static void mallinfo_handler(FAR void *ptr, size_t size, int used,
FAR void *user)
{
FAR struct mallinfo *info = user;
if (!used)
{
info->ordblks++;
info->fordblks += size;
if (size > info->mxordblk)
{
info->mxordblk = size;
}
}
else
{
info->aordblks++;
}
}
/****************************************************************************
* Name: mallinfo_task_handler
****************************************************************************/
static void mallinfo_task_handler(FAR void *ptr, size_t size, int used,
FAR void *user)
{
FAR struct mm_mallinfo_handler_s *handler = user;
FAR const struct malltask *task = handler->task;
FAR struct mallinfo_task *info = handler->info;
if (used)
{
#if CONFIG_MM_BACKTRACE >= 0
FAR struct memdump_backtrace_s *buf =
ptr + size - sizeof(struct memdump_backtrace_s);
#else
# define buf NULL
#endif
if ((MM_DUMP_ASSIGN(task, buf) || MM_DUMP_ALLOC(task, buf) ||
MM_DUMP_LEAK(task, buf)) && MM_DUMP_SEQNO(task, buf))
{
info->aordblks++;
info->uordblks += size;
}
#undef buf
}
else if (task->pid == PID_MM_FREE)
{
info->aordblks++;
info->uordblks += size;
}
}
/****************************************************************************
* Name: mm_lock
*
* Description:
* Take the MM mutex. This may be called from the OS in certain conditions
* when it is impossible to wait on a mutex:
* 1.The idle process performs the memory corruption check.
* 2.The task/thread free the memory in the exiting process.
*
* Input Parameters:
* heap - heap instance want to take mutex
*
* Returned Value:
* 0 if the lock can be taken, otherwise negative errno.
*
****************************************************************************/
static int mm_lock(FAR struct mm_heap_s *heap)
{
#if defined(CONFIG_BUILD_FLAT) || defined(__KERNEL__)
/* Check current environment */
if (up_interrupt_context())
{
#if !defined(CONFIG_SMP)
/* Check the mutex value, if held by someone, then return false.
* Or, touch the heap internal data directly.
*/
return nxmutex_is_locked(&heap->mm_lock) ? -EAGAIN : 0;
#else
/* Can't take mutex in SMP interrupt handler */
return -EAGAIN;
#endif
}
else
#endif
/* _SCHED_GETTID() returns the task ID of the task at the head of the
* ready-to-run task list. mm_lock() may be called during context
* switches. There are certain situations during context switching when
* the OS data structures are in flux and then can't be freed immediately
* (e.g. the running thread stack).
*
* This is handled by _SCHED_GETTID() to return the special value
* -ESRCH to indicate this special situation.
*/
if (_SCHED_GETTID() < 0)
{
return -ESRCH;
}
else
{
return nxmutex_lock(&heap->mm_lock);
}
}
/****************************************************************************
* Name: mm_unlock
*
* Description:
* Release the MM mutex when it is not longer needed.
*
****************************************************************************/
static void mm_unlock(FAR struct mm_heap_s *heap)
{
#if defined(CONFIG_BUILD_FLAT) || defined(__KERNEL__)
if (up_interrupt_context())
{
return;
}
#endif
DEBUGVERIFY(nxmutex_unlock(&heap->mm_lock));
}
/****************************************************************************
* Name: memdump_handler
****************************************************************************/
static void memdump_handler(FAR void *ptr, size_t size, int used,
FAR void *user)
{
FAR struct mm_memdump_priv_s *priv = user;
FAR const struct mm_memdump_s *dump = priv->dump;
if (used)
{
#if CONFIG_MM_BACKTRACE >= 0
FAR struct memdump_backtrace_s *buf =
ptr + size - sizeof(struct memdump_backtrace_s);
#else
# define buf NULL
#endif
if ((MM_DUMP_ASSIGN(dump, buf) || MM_DUMP_ALLOC(dump, buf) ||
MM_DUMP_LEAK(dump, buf)) && MM_DUMP_SEQNO(dump, buf))
{
priv->info.aordblks++;
priv->info.uordblks += size;
memdump_allocnode(ptr, size);
}
#if CONFIG_MM_HEAP_BIGGEST_COUNT > 0
else if(dump->pid == PID_MM_BIGGEST && MM_DUMP_SEQNO(dump, buf))
{
memdump_record_biggest(priv, ptr, size);
}
#endif
#undef buf
}
else if (dump->pid == PID_MM_FREE)
{
priv->info.aordblks++;
priv->info.uordblks += size;
syslog(LOG_INFO, "%12zu%*p\n", size, BACKTRACE_PTR_FMT_WIDTH, ptr);
}
}
/****************************************************************************
* Name: mm_delayfree
*
* Description:
* Delay free memory if `delay` is true, otherwise free it immediately.
*
****************************************************************************/
static void mm_delayfree(FAR struct mm_heap_s *heap, FAR void *mem,
bool delay)
{
if (mm_lock(heap) == 0)
{
size_t size = mm_malloc_size(heap, mem);
UNUSED(size);
#ifdef CONFIG_MM_FILL_ALLOCATIONS
#if CONFIG_MM_FREE_DELAYCOUNT_MAX > 0
/* If delay free is enabled, a memory node will be freed twice.
* The first time is to add the node to the delay list, and the second
* time is to actually free the node. Therefore, we only colorize the
* memory node the first time, when `delay` is set to true.
*/
if (delay)
#endif
{
memset(mem, MM_FREE_MAGIC, nodesize);
}
#endif
kasan_poison(mem, size);
/* Pass, return to the tlsf pool */
if (delay)
{
add_delaylist(heap, mem);
}
else
{
/* Update heap statistics */
heap->mm_curused -= size;
sched_note_heap(NOTE_HEAP_FREE, heap, mem, size, heap->mm_curused);
tlsf_free(heap->mm_tlsf, mem);
}
mm_unlock(heap);
}
else
{
/* Add to the delay list(see the comment in mm_lock) */
add_delaylist(heap, mem);
}
}
/****************************************************************************
* Public Functions
****************************************************************************/
/****************************************************************************
* Name: mm_addregion
*
* Description:
* This function adds a region of contiguous memory to the selected heap.
*
* Input Parameters:
* heap - The selected heap
* heapstart - Start of the heap region
* heapsize - Size of the heap region
*
* Returned Value:
* None
*
* Assumptions:
*
****************************************************************************/
void mm_addregion(FAR struct mm_heap_s *heap, FAR void *heapstart,
size_t heapsize)
{
#if CONFIG_MM_REGIONS > 1
int idx;
idx = heap->mm_nregions;
/* Writing past CONFIG_MM_REGIONS would have catastrophic consequences */
DEBUGASSERT(idx < CONFIG_MM_REGIONS);
if (idx >= CONFIG_MM_REGIONS)
{
return;
}
#else
# define idx 0
#endif
#ifdef CONFIG_MM_FILL_ALLOCATIONS
/* Use the fill value to mark uninitialized user memory */
memset(heapstart, 0xcc, heapsize);
#endif
/* Register to KASan for access check */
kasan_register(heapstart, &heapsize);
DEBUGVERIFY(mm_lock(heap));
minfo("Region %d: base=%p size=%zu\n", idx + 1, heapstart, heapsize);
/* Add the size of this region to the total size of the heap */
heap->mm_heapsize += heapsize;
/* Save the start and end of the heap */
heap->mm_heapstart[idx] = heapstart;
heap->mm_heapend[idx] = heapstart + heapsize;
#undef idx
#if CONFIG_MM_REGIONS > 1
heap->mm_nregions++;
#endif
/* Add memory to the tlsf pool */
tlsf_add_pool(heap->mm_tlsf, heapstart, heapsize);
sched_note_heap(NOTE_HEAP_ADD, heap, heapstart, heapsize,
heap->mm_curused);
mm_unlock(heap);
}
/****************************************************************************
* Name: mm_brkaddr
*
* Description:
* Return the break address of a heap region. Zero is returned if the
* memory region is not initialized.
*
****************************************************************************/
FAR void *mm_brkaddr(FAR struct mm_heap_s *heap, int region)
{
#if CONFIG_MM_REGIONS > 1
DEBUGASSERT(region >= 0 && region < heap->mm_nregions);
#else
DEBUGASSERT(region == 0);
#endif
return heap->mm_heapend[region];
}
/****************************************************************************
* Name: mm_calloc
*
* Descriptor:
* mm_calloc() calculates the size of the allocation and calls mm_zalloc()
*
****************************************************************************/
FAR void *mm_calloc(FAR struct mm_heap_s *heap, size_t n, size_t elem_size)
{
FAR void *mem = NULL;
/* Verify input parameters
*
* elem_size or n is zero treats as valid input.
*
* Assure that the following multiplication cannot overflow the size_t
* type, i.e., that: SIZE_MAX >= n * elem_size
*
* Refer to SEI CERT C Coding Standard.
*/
if (elem_size == 0 || n <= (SIZE_MAX / elem_size))
{
mem = mm_zalloc(heap, n * elem_size);
}
return mem;
}
#ifdef CONFIG_DEBUG_MM
/****************************************************************************
* Name: mm_checkcorruption
*
* Description:
* mm_checkcorruption is used to check whether memory heap is normal.
*
****************************************************************************/
void mm_checkcorruption(FAR struct mm_heap_s *heap)
{
#if CONFIG_MM_REGIONS > 1
int region;
#else
# define region 0
#endif
/* Visit each region */
#if CONFIG_MM_REGIONS > 1
for (region = 0; region < heap->mm_nregions; region++)
#endif
{
/* Retake the mutex for each region to reduce latencies */
if (mm_lock(heap) < 0)
{
return;
}
/* Check tlsf control block in the first pass */
if (region == 0)
{
tlsf_check(heap->mm_tlsf);
}
/* Check tlsf pool in each iteration temporarily */
tlsf_check_pool(heap->mm_heapstart[region]);
/* Release the mutex */
mm_unlock(heap);
}
#undef region
}
#endif
/****************************************************************************
* Name: mm_extend
*
* Description:
* Extend a heap region by add a block of (virtually) contiguous memory
* to the end of the heap.
*
****************************************************************************/
void mm_extend(FAR struct mm_heap_s *heap, FAR void *mem, size_t size,
int region)
{
size_t oldsize;
/* Make sure that we were passed valid parameters */
#if CONFIG_MM_REGIONS > 1
DEBUGASSERT(region >= 0 && region < heap->mm_nregions);
#else
DEBUGASSERT(region == 0);
#endif
DEBUGASSERT(mem == heap->mm_heapend[region]);
/* Take the memory manager mutex */
DEBUGVERIFY(mm_lock(heap));
/* Extend the tlsf pool */
oldsize = heap->mm_heapend[region] - heap->mm_heapstart[region];
tlsf_extend_pool(heap->mm_tlsf, heap->mm_heapstart[region], oldsize, size);
/* Save the new size */
heap->mm_heapsize += size;
heap->mm_heapend[region] += size;
mm_unlock(heap);
}
/****************************************************************************
* Name: mm_free
*
* Description:
* Returns a chunk of memory to the list of free nodes, merging with
* adjacent free chunks if possible.
*
****************************************************************************/
void mm_free(FAR struct mm_heap_s *heap, FAR void *mem)
{
minfo("Freeing %p\n", mem);
/* Protect against attempts to free a NULL reference */
if (mem == NULL)
{
return;
}
DEBUGASSERT(mm_heapmember(heap, mem));
#ifdef CONFIG_MM_HEAP_MEMPOOL
if (heap->mm_mpool)
{
if (mempool_multiple_free(heap->mm_mpool, mem) >= 0)
{
return;
}
}
#endif
mm_delayfree(heap, mem, CONFIG_MM_FREE_DELAYCOUNT_MAX > 0);
}
/****************************************************************************
* Name: mm_heapmember
*
* Description:
* Check if an address lies in the heap.
*
* Parameters:
* heap - The heap to check
* mem - The address to check
*
* Return Value:
* true if the address is a member of the heap. false if not
* not. If the address is not a member of the heap, then it
* must be a member of the user-space heap (unchecked)
*
****************************************************************************/
bool mm_heapmember(FAR struct mm_heap_s *heap, FAR void *mem)
{
#if CONFIG_MM_REGIONS > 1
int i;
/* A valid address from the heap for this region would have to lie
* between the region's two guard nodes.
*/
for (i = 0; i < heap->mm_nregions; i++)
{
if (mem >= heap->mm_heapstart[i] &&
mem < heap->mm_heapend[i])
{
return true;
}
}
/* The address does not like any any region assigned to the heap */
return false;
#else
/* A valid address from the heap would have to lie between the
* two guard nodes.
*/
if (mem >= heap->mm_heapstart[0] &&
mem < heap->mm_heapend[0])
{
return true;
}
/* Otherwise, the address does not lie in the heap */
return false;
#endif
}
/****************************************************************************
* Name: mm_initialize
*
* Description:
* Initialize the selected heap data structures, providing the initial
* heap region.
*
* Input Parameters:
* heap - The selected heap
* heapstart - Start of the initial heap region
* heapsize - Size of the initial heap region
*
* Returned Value:
* None
*
* Assumptions:
*
****************************************************************************/
FAR struct mm_heap_s *mm_initialize(FAR const char *name,
FAR void *heapstart, size_t heapsize)
{
FAR struct mm_heap_s *heap;
minfo("Heap: name=%s start=%p size=%zu\n", name, heapstart, heapsize);
/* Reserve a block space for mm_heap_s context */
DEBUGASSERT(heapsize > sizeof(struct mm_heap_s));
heap = (FAR struct mm_heap_s *)heapstart;
memset(heap, 0, sizeof(struct mm_heap_s));
heapstart += sizeof(struct mm_heap_s);
heapsize -= sizeof(struct mm_heap_s);
/* Allocate and create TLSF context */
DEBUGASSERT(heapsize > tlsf_size());
heap->mm_tlsf = tlsf_create(heapstart);
heapstart += tlsf_size();
heapsize -= tlsf_size();
/* Initialize the malloc mutex (to support one-at-
* a-time access to private data sets).
*/
nxmutex_init(&heap->mm_lock);
/* Add the initial region of memory to the heap */
mm_addregion(heap, heapstart, heapsize);
#if defined(CONFIG_FS_PROCFS) && !defined(CONFIG_FS_PROCFS_EXCLUDE_MEMINFO)
#if defined(CONFIG_BUILD_FLAT) || defined(__KERNEL__)
heap->mm_procfs.name = name;
heap->mm_procfs.heap = heap;
# ifdef CONFIG_MM_BACKTRACE_DEFAULT
heap->mm_procfs.backtrace = true;
# endif
procfs_register_meminfo(&heap->mm_procfs);
#endif
#endif
return heap;
}
#ifdef CONFIG_MM_HEAP_MEMPOOL
FAR struct mm_heap_s *
mm_initialize_pool(FAR const char *name,
FAR void *heap_start, size_t heap_size,
FAR const struct mempool_init_s *init)
{
FAR struct mm_heap_s *heap;
#if CONFIG_MM_HEAP_MEMPOOL_THRESHOLD > 0
size_t poolsize[MEMPOOL_NPOOLS];
struct mempool_init_s def;
if (init == NULL)
{
/* Initialize the multiple mempool default parameter */
int i;
for (i = 0; i < MEMPOOL_NPOOLS; i++)
{
# if CONFIG_MM_MIN_BLKSIZE != 0
poolsize[i] = (i + 1) * CONFIG_MM_MIN_BLKSIZE;
# else
poolsize[i] = (i + 1) * tlsf_align_size();
# endif
}
def.poolsize = poolsize;
def.npools = MEMPOOL_NPOOLS;
def.threshold = CONFIG_MM_HEAP_MEMPOOL_THRESHOLD;
def.chunksize = CONFIG_MM_HEAP_MEMPOOL_CHUNK_SIZE;
def.expandsize = CONFIG_MM_HEAP_MEMPOOL_EXPAND_SIZE;
def.dict_expendsize = CONFIG_MM_HEAP_MEMPOOL_DICTIONARY_EXPAND_SIZE;
init = &def;
}
#endif
heap = mm_initialize(name, heap_start, heap_size);
/* Initialize the multiple mempool in heap */
if (init != NULL && init->poolsize != NULL && init->npools != 0)
{
heap->mm_threshold = init->threshold;
heap->mm_mpool = mempool_multiple_init(name, init->poolsize,
init->npools,
(mempool_multiple_alloc_t)mempool_memalign,
(mempool_multiple_alloc_size_t)mm_malloc_size,
(mempool_multiple_free_t)mm_free, heap,
init->chunksize, init->expandsize,
init->dict_expendsize);
}
return heap;
}
#endif
/****************************************************************************
* Name: mm_mallinfo
*
* Description:
* mallinfo returns a copy of updated current heap information.
*
****************************************************************************/
struct mallinfo mm_mallinfo(FAR struct mm_heap_s *heap)
{
struct mallinfo info;
#ifdef CONFIG_MM_HEAP_MEMPOOL
struct mallinfo poolinfo;
#endif
#if CONFIG_MM_REGIONS > 1
int region;
#else
# define region 0
#endif
memset(&info, 0, sizeof(struct mallinfo));
/* Visit each region */
#if CONFIG_MM_REGIONS > 1
for (region = 0; region < heap->mm_nregions; region++)
#endif
{
/* Retake the mutex for each region to reduce latencies */
DEBUGVERIFY(mm_lock(heap));
tlsf_walk_pool(heap->mm_heapstart[region],
mallinfo_handler, &info);
mm_unlock(heap);
}
#undef region
info.arena = heap->mm_heapsize;
info.uordblks = info.arena - info.fordblks;
info.usmblks = heap->mm_maxused;
#ifdef CONFIG_MM_HEAP_MEMPOOL
poolinfo = mempool_multiple_mallinfo(heap->mm_mpool);
info.uordblks -= poolinfo.fordblks;
info.fordblks += poolinfo.fordblks;
#endif
return info;
}
struct mallinfo_task mm_mallinfo_task(FAR struct mm_heap_s *heap,
FAR const struct malltask *task)
{
struct mm_mallinfo_handler_s handle;
struct mallinfo_task info =
{
0, 0
};
#if CONFIG_MM_REGIONS > 1
int region;
#else
#define region 0
#endif
#ifdef CONFIG_MM_HEAP_MEMPOOL
info = mempool_multiple_info_task(heap->mm_mpool, task);
#endif
handle.task = task;
handle.info = &info;
#if CONFIG_MM_REGIONS > 1
for (region = 0; region < heap->mm_nregions; region++)
#endif
{
/* Retake the mutex for each region to reduce latencies */
DEBUGVERIFY(mm_lock(heap));
tlsf_walk_pool(heap->mm_heapstart[region],
mallinfo_task_handler, &handle);
mm_unlock(heap);
}
#undef region
return info;
}
/****************************************************************************
* Name: mm_memdump
*
* Description:
* mm_memdump returns a memory info about specified pid of task/thread.
* if pid equals -1, this function will dump all allocated node and output
* backtrace for every allocated node for this heap, if pid equals -2, this
* function will dump all free node for this heap, and if pid is greater
* than or equal to 0, will dump pid allocated node and output backtrace.
****************************************************************************/
void mm_memdump(FAR struct mm_heap_s *heap,
FAR const struct mm_memdump_s *dump)
{
#if CONFIG_MM_REGIONS > 1
int region;
#else
# define region 0
#endif
struct mm_memdump_priv_s priv;
pid_t pid = dump->pid;
memset(&priv, 0, sizeof(struct mm_memdump_priv_s));
priv.dump = dump;
if (pid == PID_MM_MEMPOOL)
{
syslog(LOG_INFO, "Memdump mempool\n");
}
else if (pid == PID_MM_LEAK)
{
syslog(LOG_INFO, "Memdump leak\n");
memdump_info_pool(&priv, heap);
}
else if (pid == PID_MM_ALLOC || pid >= 0)
{
FAR struct tcb_s *tcb = NULL;
FAR const char *name;
if (pid == PID_MM_ALLOC)
{
name = "ALL";
}
else
{
name = "Unkown";
tcb = nxsched_get_tcb(pid);
}
if (tcb == NULL)
{
syslog(LOG_INFO, "Memdump task %s\n", name);
}
else
{
name = get_task_name(tcb);
syslog(LOG_INFO, "Memdump task stack_alloc_ptr: %p,"
" adj_stack_size: %zu, name: %s\n",
tcb->stack_alloc_ptr, tcb->adj_stack_size, name);
}
memdump_info_pool(&priv, heap);
}
else if (pid == PID_MM_FREE)
{
syslog(LOG_INFO, "Dump all free memory node info\n");
memdump_info_pool(&priv, heap);
}
#if CONFIG_MM_HEAP_BIGGEST_COUNT > 0
else if (pid == PID_MM_BIGGEST)
{
syslog(LOG_INFO, "Memdump biggest allocated top %d\n",
CONFIG_MM_HEAP_BIGGEST_COUNT);
}
#endif
#if CONFIG_MM_BACKTRACE < 0
syslog(LOG_INFO, "%12s%*s\n", "Size", BACKTRACE_PTR_FMT_WIDTH, "Address");
#else
syslog(LOG_INFO, "%6s%12s%12s%*s %s\n", "PID", "Size", "Sequence",
BACKTRACE_PTR_FMT_WIDTH, "Address", "Backtrace");
#endif
memdump_dump_pool(&priv, heap);
#if CONFIG_MM_REGIONS > 1
for (region = 0; region < heap->mm_nregions; region++)
#endif
{
DEBUGVERIFY(mm_lock(heap));
tlsf_walk_pool(heap->mm_heapstart[region],
memdump_handler, &priv);
mm_unlock(heap);
}
#undef region
#if CONFIG_MM_HEAP_BIGGEST_COUNT > 0
if (pid == PID_MM_BIGGEST)
{
memdump_dump_biggestnodes(&priv);
}
#endif
syslog(LOG_INFO, "%12s%12s\n", "Total Blks", "Total Size");
syslog(LOG_INFO, "%12d%12d\n", priv.info.aordblks, priv.info.uordblks);
}
/****************************************************************************
* Name: mm_malloc_size
****************************************************************************/
size_t mm_malloc_size(FAR struct mm_heap_s *heap, FAR void *mem)
{
#ifdef CONFIG_MM_HEAP_MEMPOOL
if (heap->mm_mpool)
{
ssize_t size = mempool_multiple_alloc_size(heap->mm_mpool, mem);
if (size >= 0)
{
return size;
}
}
#endif
#if CONFIG_MM_BACKTRACE >= 0
return tlsf_block_size(mem) - sizeof(struct memdump_backtrace_s);
#else
return tlsf_block_size(mem);
#endif
}
/****************************************************************************
* Name: mm_malloc
*
* Description:
* Find the smallest chunk that satisfies the request. Take the memory from
* that chunk, save the remaining, smaller chunk (if any).
*
* 8-byte alignment of the allocated data is assured.
*
****************************************************************************/
FAR void *mm_malloc(FAR struct mm_heap_s *heap, size_t size)
{
size_t nodesize;
FAR void *ret;
/* In case of zero-length allocations allocate the minimum size object */
if (size < 1)
{
size = 1;
}
#ifdef CONFIG_MM_HEAP_MEMPOOL
if (heap->mm_mpool)
{
ret = mempool_multiple_alloc(heap->mm_mpool, size);
if (ret != NULL)
{
return ret;
}
}
#endif
/* Free the delay list first */
free_delaylist(heap, false);
/* Allocate from the tlsf pool */
DEBUGVERIFY(mm_lock(heap));
#if CONFIG_MM_BACKTRACE >= 0
ret = tlsf_malloc(heap->mm_tlsf, size +
sizeof(struct memdump_backtrace_s));
#else
ret = tlsf_malloc(heap->mm_tlsf, size);
#endif
nodesize = mm_malloc_size(heap, ret);
heap->mm_curused += nodesize;
if (heap->mm_curused > heap->mm_maxused)
{
heap->mm_maxused = heap->mm_curused;
}
if (ret)
{
sched_note_heap(NOTE_HEAP_ALLOC, heap, ret, nodesize,
heap->mm_curused);
}
mm_unlock(heap);
if (ret)
{
#if CONFIG_MM_BACKTRACE >= 0
FAR struct memdump_backtrace_s *buf = ret + nodesize;
memdump_backtrace(heap, buf);
#endif
ret = kasan_unpoison(ret, nodesize);
#ifdef CONFIG_MM_FILL_ALLOCATIONS
memset(ret, 0xaa, nodesize);
#endif
}
#if CONFIG_MM_FREE_DELAYCOUNT_MAX > 0
/* Try again after free delay list */
else if (free_delaylist(heap, true))
{
return mm_malloc(heap, size);
}
#endif
return ret;
}
/****************************************************************************
* Name: mm_memalign
*
* Description:
* memalign requests more than enough space from malloc, finds a region
* within that chunk that meets the alignment request and then frees any
* leading or trailing space.
*
* The alignment argument must be a power of two (not checked). 8-byte
* alignment is guaranteed by normal malloc calls.
*
****************************************************************************/
FAR void *mm_memalign(FAR struct mm_heap_s *heap, size_t alignment,
size_t size)
{
size_t nodesize;
FAR void *ret;
#ifdef CONFIG_MM_HEAP_MEMPOOL
if (heap->mm_mpool)
{
ret = mempool_multiple_memalign(heap->mm_mpool, alignment, size);
if (ret != NULL)
{
return ret;
}
}
#endif
/* Free the delay list first */
free_delaylist(heap, false);
/* Allocate from the tlsf pool */
DEBUGVERIFY(mm_lock(heap));
#if CONFIG_MM_BACKTRACE >= 0
ret = tlsf_memalign(heap->mm_tlsf, alignment, size +
sizeof(struct memdump_backtrace_s));
#else
ret = tlsf_memalign(heap->mm_tlsf, alignment, size);
#endif
nodesize = mm_malloc_size(heap, ret);
heap->mm_curused += nodesize;
if (heap->mm_curused > heap->mm_maxused)
{
heap->mm_maxused = heap->mm_curused;
}
if (ret)
{
sched_note_heap(NOTE_HEAP_ALLOC, heap, ret, nodesize,
heap->mm_curused);
}
mm_unlock(heap);
if (ret)
{
#if CONFIG_MM_BACKTRACE >= 0
FAR struct memdump_backtrace_s *buf = ret + nodesize;
memdump_backtrace(heap, buf);
#endif
ret = kasan_unpoison(ret, nodesize);
}
#if CONFIG_MM_FREE_DELAYCOUNT_MAX > 0
/* Try again after free delay list */
else if (free_delaylist(heap, true))
{
return mm_memalign(heap, alignment, size);
}
#endif
return ret;
}
/****************************************************************************
* Name: mm_realloc
*
* Description:
* If the reallocation is for less space, then:
*
* (1) the current allocation is reduced in size
* (2) the remainder at the end of the allocation is returned to the
* free list.
*
* If the request is for more space and the current allocation can be
* extended, it will be extended by:
*
* (1) Taking the additional space from the following free chunk, or
* (2) Taking the additional space from the preceding free chunk.
* (3) Or both
*
* If the request is for more space but the current chunk cannot be
* extended, then malloc a new buffer, copy the data into the new buffer,
* and free the old buffer.
*
****************************************************************************/
FAR void *mm_realloc(FAR struct mm_heap_s *heap, FAR void *oldmem,
size_t size)
{
FAR void *newmem;
size_t oldsize;
size_t newsize;
/* If oldmem is NULL, then realloc is equivalent to malloc */
if (oldmem == NULL)
{
return mm_malloc(heap, size);
}
/* If size is zero, reallocate to the minim size object, so
* the memory pointed by oldmem is freed
*/
if (size < 1)
{
size = 1;
}
#ifdef CONFIG_MM_HEAP_MEMPOOL
if (heap->mm_mpool)
{
newmem = mempool_multiple_realloc(heap->mm_mpool, oldmem, size);
if (newmem != NULL)
{
return newmem;
}
else if (size <= heap->mm_threshold ||
mempool_multiple_alloc_size(heap->mm_mpool, oldmem) >= 0)
{
newmem = mm_malloc(heap, size);
if (newmem != 0)
{
memcpy(newmem, oldmem, size);
mm_free(heap, oldmem);
return newmem;
}
}
}
#endif
#ifdef CONFIG_MM_KASAN
newmem = mm_malloc(heap, size);
if (newmem)
{
if (size > mm_malloc_size(heap, oldmem))
{
size = mm_malloc_size(heap, oldmem);
}
memcpy(newmem, oldmem, size);
mm_free(heap, oldmem);
}
#else
/* Free the delay list first */
free_delaylist(heap, false);
/* Allocate from the tlsf pool */
DEBUGVERIFY(mm_lock(heap));
oldsize = mm_malloc_size(heap, oldmem);
heap->mm_curused -= oldsize;
#if CONFIG_MM_BACKTRACE >= 0
newmem = tlsf_realloc(heap->mm_tlsf, oldmem, size +
sizeof(struct memdump_backtrace_s));
#else
newmem = tlsf_realloc(heap->mm_tlsf, oldmem, size);
#endif
newsize = mm_malloc_size(heap, newmem);
heap->mm_curused += newmem ? newsize : oldsize;
if (heap->mm_curused > heap->mm_maxused)
{
heap->mm_maxused = heap->mm_curused;
}
if (newmem)
{
sched_note_heap(NOTE_HEAP_FREE, heap, oldmem, oldsize,
heap->mm_curused - newsize);
sched_note_heap(NOTE_HEAP_ALLOC, heap, newmem, newsize,
heap->mm_curused);
}
mm_unlock(heap);
if (newmem)
{
#if CONFIG_MM_BACKTRACE >= 0
FAR struct memdump_backtrace_s *buf = newmem + newsize;
memdump_backtrace(heap, buf);
#endif
}
#if CONFIG_MM_FREE_DELAYCOUNT_MAX > 0
/* Try again after free delay list */
else if (free_delaylist(heap, true))
{
return mm_realloc(heap, oldmem, size);
}
#endif
#endif
return newmem;
}
/****************************************************************************
* Name: mm_uninitialize
*
* Description:
* Uninitialize the selected heap data structures.
*
* Input Parameters:
* heap - The heap to uninitialize
*
* Returned Value:
* None
*
****************************************************************************/
void mm_uninitialize(FAR struct mm_heap_s *heap)
{
int i;
#ifdef CONFIG_MM_HEAP_MEMPOOL
mempool_multiple_deinit(heap->mm_mpool);
#endif
for (i = 0; i < CONFIG_MM_REGIONS; i++)
{
kasan_unregister(heap->mm_heapstart[i]);
sched_note_heap(NOTE_HEAP_REMOVE, heap, heap->mm_heapstart[i],
(uintptr_t)heap->mm_heapend[i] -
(uintptr_t)heap->mm_heapstart[i], heap->mm_curused);
}
#if defined(CONFIG_FS_PROCFS) && !defined(CONFIG_FS_PROCFS_EXCLUDE_MEMINFO)
# if defined(CONFIG_BUILD_FLAT) || defined(__KERNEL__)
procfs_unregister_meminfo(&heap->mm_procfs);
# endif
#endif
nxmutex_destroy(&heap->mm_lock);
tlsf_destroy(&heap->mm_tlsf);
}
/****************************************************************************
* Name: mm_zalloc
*
* Description:
* mm_zalloc calls mm_malloc, then zeroes out the allocated chunk.
*
****************************************************************************/
FAR void *mm_zalloc(FAR struct mm_heap_s *heap, size_t size)
{
FAR void *alloc = mm_malloc(heap, size);
if (alloc)
{
memset(alloc, 0, size);
}
return alloc;
}
/****************************************************************************
* Name: mm_free_delaylist
*
* Description:
* force freeing the delaylist of this heap.
*
****************************************************************************/
void mm_free_delaylist(FAR struct mm_heap_s *heap)
{
if (heap)
{
free_delaylist(heap, true);
}
}
/****************************************************************************
* Name: mm_heapfree
*
* Description:
* Return the total free size (in bytes) in the heap
*
****************************************************************************/
size_t mm_heapfree(FAR struct mm_heap_s *heap)
{
return heap->mm_heapsize - heap->mm_curused;
}
/****************************************************************************
* Name: mm_heapfree_largest
*
* Description:
* Return the largest chunk of contiguous memory in the heap
*
****************************************************************************/
size_t mm_heapfree_largest(FAR struct mm_heap_s *heap)
{
return SIZE_MAX;
}