471 lines
15 KiB
C
471 lines
15 KiB
C
/****************************************************************************
|
|
* sched/task/task_vfork
|
|
*
|
|
* Copyright (C) 2013-2014 Gregory Nutt. All rights reserved.
|
|
* Author: Gregory Nutt <gnutt@nuttx.org>
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* 3. Neither the name NuttX nor the names of its contributors may be
|
|
* used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
|
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
****************************************************************************/
|
|
|
|
/****************************************************************************
|
|
* Included Files
|
|
****************************************************************************/
|
|
|
|
#include <nuttx/config.h>
|
|
|
|
#include <sys/wait.h>
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include <errno.h>
|
|
#include <queue.h>
|
|
#include <debug.h>
|
|
|
|
#include <nuttx/sched.h>
|
|
|
|
#include "sched/sched.h"
|
|
#include "group/group.h"
|
|
#include "task/task.h"
|
|
|
|
/****************************************************************************
|
|
* Pre-processor Definitions
|
|
****************************************************************************/
|
|
/* vfork() requires architecture-specific support as well as waipid(). */
|
|
|
|
#if defined(CONFIG_ARCH_HAVE_VFORK) && defined(CONFIG_SCHED_WAITPID)
|
|
|
|
/* This is an artificial limit to detect error conditions where an argv[]
|
|
* list is not properly terminated.
|
|
*/
|
|
|
|
#define MAX_VFORK_ARGS 256
|
|
|
|
/****************************************************************************
|
|
* Private Functions
|
|
****************************************************************************/
|
|
|
|
/****************************************************************************
|
|
* Name: vfork_namesetup
|
|
*
|
|
* Description:
|
|
* Copy the task name.
|
|
*
|
|
* Input Parameters:
|
|
* tcb - Address of the new task's TCB
|
|
* name - Name of the new task
|
|
*
|
|
* Return Value:
|
|
* None
|
|
*
|
|
****************************************************************************/
|
|
|
|
#if CONFIG_TASK_NAME_SIZE > 0
|
|
static inline void vfork_namesetup(FAR struct tcb_s *parent,
|
|
FAR struct task_tcb_s *child)
|
|
{
|
|
/* Copy the name from the parent into the child TCB */
|
|
|
|
strncpy(child->cmn.name, parent->name, CONFIG_TASK_NAME_SIZE);
|
|
}
|
|
#else
|
|
# define vfork_namesetup(p,c)
|
|
#endif /* CONFIG_TASK_NAME_SIZE */
|
|
|
|
/****************************************************************************
|
|
* Name: vfork_stackargsetup
|
|
*
|
|
* Description:
|
|
* Clone the task arguments in the same relative positions on the child's
|
|
* stack.
|
|
*
|
|
* Input Parameters:
|
|
* parent - Address of the parent task's TCB
|
|
* child - Address of the child task's TCB
|
|
*
|
|
* Return Value:
|
|
* Zero (OK) on success; a negated errno on failure.
|
|
*
|
|
****************************************************************************/
|
|
|
|
static inline int vfork_stackargsetup(FAR struct tcb_s *parent,
|
|
FAR struct task_tcb_s *child)
|
|
{
|
|
/* Is the parent a task? or a pthread? Only tasks (and kernel threads)
|
|
* have command line arguments.
|
|
*/
|
|
|
|
child->argv = NULL;
|
|
if ((parent->flags & TCB_FLAG_TTYPE_MASK) != TCB_FLAG_TTYPE_PTHREAD)
|
|
{
|
|
FAR struct task_tcb_s *ptcb = (FAR struct task_tcb_s *)parent;
|
|
uintptr_t offset;
|
|
int argc;
|
|
|
|
/* Get the address correction */
|
|
|
|
offset = child->cmn.xcp.regs[REG_SP] - parent->xcp.regs[REG_SP];
|
|
|
|
/* Change the child argv[] to point into its stack (instead of its
|
|
* parent's stack).
|
|
*/
|
|
|
|
child->argv = (FAR char **)((uintptr_t)ptcb->argv + offset);
|
|
|
|
/* Copy the adjusted address for each argument */
|
|
|
|
argc = 0;
|
|
while (ptcb->argv[argc])
|
|
{
|
|
uintptr_t newaddr = (uintptr_t)ptcb->argv[argc] + offset;
|
|
child->argv[argc] = (FAR char *)newaddr;
|
|
|
|
/* Increment the number of args. Here is a sanity check to
|
|
* prevent running away with an unterminated argv[] list.
|
|
* MAX_VFORK_ARGS should be sufficiently large that this never
|
|
* happens in normal usage.
|
|
*/
|
|
|
|
if (++argc > MAX_VFORK_ARGS)
|
|
{
|
|
return -E2BIG;
|
|
}
|
|
}
|
|
|
|
/* Put a terminator entry at the end of the child argv[] array. */
|
|
|
|
child->argv[argc] = NULL;
|
|
}
|
|
|
|
return OK;
|
|
}
|
|
|
|
/****************************************************************************
|
|
* Name: vfork_argsetup
|
|
*
|
|
* Description:
|
|
* Clone the argument list from the parent to the child.
|
|
*
|
|
* Input Parameters:
|
|
* parent - Address of the parent task's TCB
|
|
* child - Address of the child task's TCB
|
|
*
|
|
* Return Value:
|
|
* Zero (OK) on success; a negated errno on failure.
|
|
*
|
|
****************************************************************************/
|
|
|
|
static inline int vfork_argsetup(FAR struct tcb_s *parent,
|
|
FAR struct task_tcb_s *child)
|
|
{
|
|
/* Clone the task name */
|
|
|
|
vfork_namesetup(parent, child);
|
|
|
|
/* Adjust and copy the argv[] array. */
|
|
|
|
return vfork_stackargsetup(parent, child);
|
|
}
|
|
|
|
/****************************************************************************
|
|
* Public Functions
|
|
****************************************************************************/
|
|
|
|
/****************************************************************************
|
|
* Name: task_vforksetup
|
|
*
|
|
* Description:
|
|
* The vfork() function has the same effect as fork(), except that the
|
|
* behavior is undefined if the process created by vfork() either modifies
|
|
* any data other than a variable of type pid_t used to store the return
|
|
* value from vfork(), or returns from the function in which vfork() was
|
|
* called, or calls any other function before successfully calling _exit()
|
|
* or one of the exec family of functions.
|
|
*
|
|
* This function provides one step in the overall vfork() sequence: It
|
|
* Allocates and initializes the child task's TCB. The overall sequence is:
|
|
*
|
|
* 1) User code calls vfork(). vfork() is provided in architecture-specific
|
|
* code.
|
|
* 2) vfork()and calls task_vforksetup().
|
|
* 3) task_vforksetup() allocates and configures the child task's TCB. This
|
|
* consists of:
|
|
* - Allocation of the child task's TCB.
|
|
* - Initialization of file descriptors and streams
|
|
* - Configuration of environment variables
|
|
* - Setup the input parameters for the task.
|
|
* - Initialization of the TCB (including call to up_initial_state()
|
|
* 4) up_vfork() provides any additional operating context. up_vfork must:
|
|
* - Allocate and initialize the stack
|
|
* - Initialize special values in any CPU registers that were not
|
|
* already configured by up_initial_state()
|
|
* 5) up_vfork() then calls task_vforkstart()
|
|
* 6) task_vforkstart() then executes the child thread.
|
|
*
|
|
* Input Parameters:
|
|
* parent - Address of the parent task's TCB
|
|
* child - Address of the child task's TCB
|
|
*
|
|
* Returned Value:
|
|
* Upon successful completion, task_vforksetup() returns a pointer to
|
|
* newly allocated and initialized child task's TCB. NULL is returned
|
|
* on any failure and the errno is set appropriately.
|
|
*
|
|
****************************************************************************/
|
|
|
|
FAR struct task_tcb_s *task_vforksetup(start_t retaddr)
|
|
{
|
|
struct tcb_s *parent = (FAR struct tcb_s *)g_readytorun.head;
|
|
struct task_tcb_s *child;
|
|
uint8_t ttype;
|
|
int priority;
|
|
int ret;
|
|
|
|
DEBUGASSERT(retaddr);
|
|
|
|
/* Get the type of the fork'ed task (kernel or user) */
|
|
|
|
if ((parent->flags & TCB_FLAG_TTYPE_MASK) == TCB_FLAG_TTYPE_KERNEL)
|
|
{
|
|
/* Fork'ed from a kernel thread */
|
|
|
|
ttype = TCB_FLAG_TTYPE_KERNEL;
|
|
}
|
|
else
|
|
{
|
|
/* Fork'ed from a user task or pthread */
|
|
|
|
ttype = TCB_FLAG_TTYPE_TASK;
|
|
}
|
|
|
|
/* Allocate a TCB for the child task. */
|
|
|
|
child = (FAR struct task_tcb_s *)kmm_zalloc(sizeof(struct task_tcb_s));
|
|
if (!child)
|
|
{
|
|
sdbg("ERROR: Failed to allocate TCB\n");
|
|
set_errno(ENOMEM);
|
|
return NULL;
|
|
}
|
|
|
|
/* Allocate a new task group with the same privileges as the parent */
|
|
|
|
#ifdef HAVE_TASK_GROUP
|
|
ret = group_allocate(child, parent->flags);
|
|
if (ret < 0)
|
|
{
|
|
goto errout_with_tcb;
|
|
}
|
|
#endif
|
|
|
|
/* Associate file descriptors with the new task */
|
|
|
|
#if CONFIG_NFILE_DESCRIPTORS > 0 || CONFIG_NSOCKET_DESCRIPTORS > 0
|
|
ret = group_setuptaskfiles(child);
|
|
if (ret < OK)
|
|
{
|
|
goto errout_with_tcb;
|
|
}
|
|
#endif
|
|
|
|
/* Get the priority of the parent task */
|
|
|
|
#ifdef CONFIG_PRIORITY_INHERITANCE
|
|
priority = parent->base_priority; /* "Normal," unboosted priority */
|
|
#else
|
|
priority = parent->sched_priority; /* Current priority */
|
|
#endif
|
|
|
|
/* Initialize the task control block. This calls up_initial_state() */
|
|
|
|
svdbg("Child priority=%d start=%p\n", priority, retaddr);
|
|
ret = task_schedsetup(child, priority, retaddr, parent->entry.main, ttype);
|
|
if (ret < OK)
|
|
{
|
|
goto errout_with_tcb;
|
|
}
|
|
|
|
svdbg("parent=%p, returning child=%p\n", parent, child);
|
|
return child;
|
|
|
|
errout_with_tcb:
|
|
sched_releasetcb((FAR struct tcb_s *)child, ttype);
|
|
set_errno(-ret);
|
|
return NULL;
|
|
}
|
|
|
|
/****************************************************************************
|
|
* Name: task_vforkstart
|
|
*
|
|
* Description:
|
|
* The vfork() function has the same effect as fork(), except that the
|
|
* behavior is undefined if the process created by vfork() either modifies
|
|
* any data other than a variable of type pid_t used to store the return
|
|
* value from vfork(), or returns from the function in which vfork() was
|
|
* called, or calls any other function before successfully calling _exit()
|
|
* or one of the exec family of functions.
|
|
*
|
|
* This function provides one step in the overall vfork() sequence: It
|
|
* starts execution of the previously initialized TCB. The overall
|
|
* sequence is:
|
|
*
|
|
* 1) User code calls vfork()
|
|
* 2) Architecture-specific code provides vfork()and calls task_vforksetup().
|
|
* 3) task_vforksetup() allocates and configures the child task's TCB. This
|
|
* consists of:
|
|
* - Allocation of the child task's TCB.
|
|
* - Initialization of file descriptors and streams
|
|
* - Configuration of environment variables
|
|
* - Setup the input parameters for the task.
|
|
* - Initialization of the TCB (including call to up_initial_state()
|
|
* 4) vfork() provides any additional operating context. vfork must:
|
|
* - Allocate and initialize the stack
|
|
* - Initialize special values in any CPU registers that were not
|
|
* already configured by up_initial_state()
|
|
* 5) vfork() then calls task_vforkstart()
|
|
* 6) task_vforkstart() then executes the child thread.
|
|
*
|
|
* Input Parameters:
|
|
* retaddr - The return address from vfork() where the child task
|
|
* will be started.
|
|
*
|
|
* Returned Value:
|
|
* Upon successful completion, vfork() returns 0 to the child process and
|
|
* returns the process ID of the child process to the parent process.
|
|
* Otherwise, -1 is returned to the parent, no child process is created,
|
|
* and errno is set to indicate the error.
|
|
*
|
|
****************************************************************************/
|
|
|
|
pid_t task_vforkstart(FAR struct task_tcb_s *child)
|
|
{
|
|
struct tcb_s *parent = (FAR struct tcb_s *)g_readytorun.head;
|
|
pid_t pid;
|
|
int rc;
|
|
int ret;
|
|
|
|
svdbg("Starting Child TCB=%p, parent=%p\n", child, g_readytorun.head);
|
|
DEBUGASSERT(child);
|
|
|
|
/* Duplicate the original argument list in the forked child TCB */
|
|
|
|
ret = vfork_argsetup(parent, child);
|
|
if (ret < 0)
|
|
{
|
|
task_vforkabort(child, -ret);
|
|
return ERROR;
|
|
}
|
|
|
|
/* Now we have enough in place that we can join the group */
|
|
|
|
#ifdef HAVE_TASK_GROUP
|
|
ret = group_initialize(child);
|
|
if (ret < 0)
|
|
{
|
|
task_vforkabort(child, -ret);
|
|
return ERROR;
|
|
}
|
|
#endif
|
|
|
|
/* Get the assigned pid before we start the task */
|
|
|
|
pid = (int)child->cmn.pid;
|
|
|
|
/* Activate the task */
|
|
|
|
ret = task_activate((FAR struct tcb_s *)child);
|
|
if (ret < OK)
|
|
{
|
|
task_vforkabort(child, -ret);
|
|
return ERROR;
|
|
}
|
|
|
|
/* Since the child task has the same priority as the parent task, it is
|
|
* now ready to run, but has not yet ran. It is a requirement that
|
|
* the parent environment be stable while vfork runs; the child thread
|
|
* is still dependent on things in the parent thread... like the pointers
|
|
* into parent thread's stack which will still appear in the child's
|
|
* registers and environment.
|
|
*
|
|
* We do not have SIG_CHILD, so we have to do some silly things here.
|
|
* The simplest way to make sure that the child thread runs to completion
|
|
* is simply to yield here. Since the child can only do exit() or
|
|
* execv/l(), that should be all that is needed.
|
|
*
|
|
* Hmmm.. this is probably not sufficient. What if we are running
|
|
* SCHED_RR? What if the child thread is suspended and rescheduled
|
|
* after the parent thread again?
|
|
*/
|
|
|
|
/* We can also exploit a bug in the execv() implementation: The PID
|
|
* of the task exec'ed by the child will not be the same as the PID of
|
|
* the child task. Therefore, waitpid() on the child task's PID will
|
|
* accomplish what we need to do.
|
|
*/
|
|
|
|
rc = 0;
|
|
|
|
#ifdef CONFIG_DEBUG
|
|
ret = waitpid(pid, &rc, 0);
|
|
if (ret < 0)
|
|
{
|
|
sdbg("ERROR: waitpid failed: %d\n", errno);
|
|
}
|
|
#else
|
|
(void)waitpid(pid, &rc, 0);
|
|
#endif
|
|
|
|
return pid;
|
|
}
|
|
|
|
/****************************************************************************
|
|
* Name: task_vforkabort
|
|
*
|
|
* Description:
|
|
* Recover from any errors after task_vforksetup() was called.
|
|
*
|
|
* Returned Value:
|
|
* None
|
|
*
|
|
****************************************************************************/
|
|
|
|
void task_vforkabort(FAR struct task_tcb_s *child, int errcode)
|
|
{
|
|
/* The TCB was added to the active task list by task_schedsetup() */
|
|
|
|
dq_rem((FAR dq_entry_t*)child, (dq_queue_t*)&g_inactivetasks);
|
|
|
|
/* Release the TCB */
|
|
|
|
sched_releasetcb((FAR struct tcb_s *)child,
|
|
child->cmn.flags & TCB_FLAG_TTYPE_MASK);
|
|
set_errno(errcode);
|
|
}
|
|
|
|
#endif /* CONFIG_ARCH_HAVE_VFORK && CONFIG_SCHED_WAITPID */
|