556 lines
19 KiB
C
556 lines
19 KiB
C
/****************************************************************************
|
|
* graphics/nxglib/nxglib_splitline.c
|
|
*
|
|
* Copyright (C) 2011-2012, 2016 Gregory Nutt. All rights reserved.
|
|
* Author: Gregory Nutt <gnutt@nuttx.org>
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* 3. Neither the name NuttX nor the names of its contributors may be
|
|
* used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
|
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
****************************************************************************/
|
|
|
|
/****************************************************************************
|
|
* Included Files
|
|
****************************************************************************/
|
|
|
|
#include <nuttx/config.h>
|
|
|
|
#include <string.h>
|
|
#include <errno.h>
|
|
#include <stdlib.h>
|
|
#include <debug.h>
|
|
|
|
#include <nuttx/nx/nxglib.h>
|
|
|
|
/****************************************************************************
|
|
* Private Types
|
|
****************************************************************************/
|
|
|
|
struct b16point_s
|
|
{
|
|
b16_t x;
|
|
b16_t y;
|
|
};
|
|
|
|
/****************************************************************************
|
|
* Private Functions
|
|
****************************************************************************/
|
|
|
|
static b16_t nxgl_interpolate(b16_t x, b16_t dy, b16_t dxdy)
|
|
{
|
|
b16_t dx = b16mulb16(dy, dxdy);
|
|
return x + dx;
|
|
}
|
|
|
|
/****************************************************************************
|
|
* Public Functions
|
|
****************************************************************************/
|
|
|
|
/****************************************************************************
|
|
* Name: nxgl_splitline
|
|
*
|
|
* Description:
|
|
* In the general case, a line with width can be represented as a
|
|
* parallelogram with a triangle at the top and bottom. Triangles and
|
|
* parallelograms are both degenerate versions of a trapeziod. This
|
|
* function breaks a wide line into triangles and trapezoids. This
|
|
* function also detects other degenerate cases:
|
|
*
|
|
* 1. If y1 == y2 then the line is horizontal and is better represented
|
|
* as a rectangle.
|
|
* 2. If x1 == x2 then the line is vertical and also better represented
|
|
* as a rectangle.
|
|
* 3. If the width of the line is 1, then there are no triangles at the
|
|
* top and bottome (this may also be the case if the width is narrow
|
|
* and the line is near vertical).
|
|
* 4. If the line is oriented is certain angles, it may consist only of
|
|
* the upper and lower triangles with no trapezoid in between. In
|
|
* this case, 3 trapezoids will be returned, but traps[1] will be
|
|
* degenerate.
|
|
*
|
|
* Input Parameters:
|
|
* vector - A pointer to the vector described the line to be drawn.
|
|
* traps - A pointer to a array of trapezoids (size 3).
|
|
* rect - A pointer to a rectangle.
|
|
*
|
|
* Returned Value:
|
|
* 0: Line successfully broken up into three trapezoids. Values in
|
|
* traps[0], traps[1], and traps[2] are valid.
|
|
* 1: Line successfully represented by one trapezoid. Value in traps[1]
|
|
* is valid.
|
|
* 2: Line successfully represented by one rectangle. Value in rect is
|
|
* valid
|
|
* <0: On errors, a negated errno value is returned.
|
|
*
|
|
****************************************************************************/
|
|
|
|
int nxgl_splitline(FAR struct nxgl_vector_s *vector,
|
|
FAR struct nxgl_trapezoid_s *traps,
|
|
FAR struct nxgl_rect_s *rect,
|
|
nxgl_coord_t linewidth)
|
|
{
|
|
struct nxgl_vector_s line;
|
|
nxgl_coord_t iheight;
|
|
nxgl_coord_t iwidth;
|
|
nxgl_coord_t iyoffset;
|
|
struct b16point_s quad[4];
|
|
b16_t b16xoffset;
|
|
b16_t b16yoffset;
|
|
b16_t b16dxdy;
|
|
b16_t angle;
|
|
b16_t cosangle;
|
|
b16_t sinangle;
|
|
b16_t b16x;
|
|
b16_t b16y;
|
|
|
|
ginfo("vector: (%d,%d)->(%d,%d) linewidth: %d\n",
|
|
vector->pt1.x, vector->pt1.y, vector->pt2.x, vector->pt2.y, linewidth);
|
|
|
|
/* First, check the linewidth */
|
|
|
|
if (linewidth < 1)
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Then make sure that the start position of the line is above the end
|
|
* position of the line... in raster order.
|
|
*/
|
|
|
|
if (vector->pt1.y < vector->pt2.y)
|
|
{
|
|
/* Vector is already in raster order */
|
|
|
|
memcpy(&line, vector, sizeof(struct nxgl_vector_s));
|
|
}
|
|
else if (vector->pt1.y > vector->pt2.y)
|
|
{
|
|
/* Swap the top and bottom */
|
|
|
|
line.pt1.x = vector->pt2.x;
|
|
line.pt1.y = vector->pt2.y;
|
|
line.pt2.x = vector->pt1.x;
|
|
line.pt2.y = vector->pt1.y;
|
|
}
|
|
else /* if (vector->pt1.y == vector->pt2.y) */
|
|
{
|
|
/* First degenerate case: The line is horizontal. */
|
|
|
|
if (vector->pt1.x < vector->pt2.x)
|
|
{
|
|
rect->pt1.x = vector->pt1.x;
|
|
rect->pt2.x = vector->pt2.x;
|
|
}
|
|
else
|
|
{
|
|
rect->pt1.x = vector->pt2.x;
|
|
rect->pt2.x = vector->pt1.x;
|
|
}
|
|
|
|
/* The height of the rectangle is the width of the line, half above
|
|
* and half below.
|
|
*/
|
|
|
|
rect->pt1.y = vector->pt1.y - (linewidth >> 1);
|
|
rect->pt2.y = rect->pt1.y + linewidth - 1;
|
|
|
|
ginfo("Horizontal rect: (%d,%d),(%d,%d)\n",
|
|
rect->pt1.x, rect->pt1.y, rect->pt2.x, rect->pt2.y);
|
|
|
|
return 2;
|
|
}
|
|
|
|
/* Check if the line is vertical */
|
|
|
|
if (line.pt1.x == line.pt2.x)
|
|
{
|
|
/* Second degenerate case: The line is vertical. */
|
|
|
|
rect->pt1.y = line.pt1.y;
|
|
rect->pt2.y = line.pt2.y;
|
|
|
|
rect->pt1.x = line.pt1.x - (linewidth >> 1);
|
|
rect->pt2.x = rect->pt1.x + linewidth - 1;
|
|
|
|
ginfo("Vertical rect: (%d,%d),(%d,%d)\n",
|
|
rect->pt1.x, rect->pt1.y, rect->pt2.x, rect->pt2.y);
|
|
|
|
return 2;
|
|
}
|
|
|
|
/* The final degenerate case */
|
|
|
|
if (linewidth == 1 &&
|
|
abs(line.pt2.x - line.pt1.x) < (line.pt2.y - line.pt1.y))
|
|
{
|
|
/* A close to vertical line of width 1 is basically
|
|
* a single parallelogram of width 1.
|
|
*/
|
|
|
|
traps[1].top.x1 = itob16(line.pt1.x);
|
|
traps[1].top.x2 = traps[1].top.x1;
|
|
traps[1].top.y = line.pt1.y;
|
|
|
|
traps[1].bot.x1 = itob16(line.pt2.x);
|
|
traps[1].bot.x2 = traps[1].bot.x1;
|
|
traps[1].bot.y = line.pt2.y;
|
|
|
|
ginfo("Vertical traps[1]: (%08x,%08x,%d),(%08x,%08x, %d)\n",
|
|
traps[1].top.x1, traps[1].top.x2, traps[1].top.y,
|
|
traps[1].bot.x1, traps[1].bot.x2, traps[1].bot.y);
|
|
|
|
return 1;
|
|
}
|
|
else if (linewidth == 1)
|
|
{
|
|
b16_t pixels_per_row;
|
|
|
|
/* Close to horizontal line of width 1 */
|
|
|
|
pixels_per_row = itob16(line.pt2.x - line.pt1.x) /
|
|
(line.pt2.y - line.pt1.y);
|
|
|
|
traps[1].top.x1 = itob16(line.pt1.x);
|
|
traps[1].top.x2 = traps[1].top.x1 + pixels_per_row;
|
|
traps[1].top.y = line.pt1.y;
|
|
|
|
traps[1].bot.x2 = itob16(line.pt2.x);
|
|
traps[1].bot.x1 = traps[1].bot.x2 - pixels_per_row;
|
|
traps[1].bot.y = line.pt2.y;
|
|
|
|
if (pixels_per_row < 0)
|
|
{
|
|
b16_t tmp;
|
|
|
|
tmp = traps[1].top.x2;
|
|
traps[1].top.x2 = traps[1].top.x1;
|
|
traps[1].top.x1 = tmp;
|
|
|
|
tmp = traps[1].bot.x2;
|
|
traps[1].bot.x2 = traps[1].bot.x1;
|
|
traps[1].bot.x1 = tmp;
|
|
}
|
|
|
|
ginfo("Horizontal traps[1]: (%08x,%08x,%d),(%08x,%08x, %d)\n",
|
|
traps[1].top.x1, traps[1].top.x2, traps[1].top.y,
|
|
traps[1].bot.x1, traps[1].bot.x2, traps[1].bot.y);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Okay, then what remains is interesting.
|
|
*
|
|
* iheight = |y2 - y1|
|
|
* iwidth = |x2 - x1|
|
|
*/
|
|
|
|
iheight = line.pt2.y - line.pt1.y + 1;
|
|
if (line.pt1.x < line.pt2.x)
|
|
{
|
|
iwidth = line.pt2.x - line.pt1.x + 1;
|
|
}
|
|
else
|
|
{
|
|
iwidth = line.pt1.x - line.pt2.x + 1;
|
|
}
|
|
|
|
/* Applying the line width to the line results in a rotated, rectangle.
|
|
* Get the Y offset from an end of the original thin line to a corner of the fat line.
|
|
*
|
|
* Angle of line: angle = atan2(iheight, iwidth)
|
|
* Y offset from line: b16yoffset = linewidth * cos(angle)
|
|
*
|
|
* For near verical lines, b16yoffset is be nearly zero. For near horizontal
|
|
* lines, b16yOffset is be about the same as linewidth.
|
|
*/
|
|
|
|
angle = b16atan2(itob16(iheight), itob16(iwidth));
|
|
cosangle = b16cos(angle);
|
|
b16yoffset = (linewidth * cosangle + 1) >> 1;
|
|
|
|
/* Get the X offset from an end of the original thin line to a corner of the fat line.
|
|
*
|
|
* For near vertical lines, b16xoffset is about the same as linewidth. For near
|
|
* horizontal lines, b16xoffset is nearly zero.
|
|
*/
|
|
|
|
sinangle = b16sin(angle);
|
|
b16xoffset = (linewidth * sinangle + 1) >> 1;
|
|
|
|
ginfo("height: %d width: %d angle: %08x b16yoffset: %08x b16xoffset: %08x\n",
|
|
iheight, iwidth, angle, b16yoffset, b16xoffset);
|
|
|
|
/* Now we know all four points of the rotated rectangle */
|
|
|
|
iyoffset = b16toi(b16yoffset + b16HALF);
|
|
if (iyoffset > 0)
|
|
{
|
|
/* Get the Y positions of each point */
|
|
|
|
b16y = itob16(line.pt1.y);
|
|
quad[0].y = b16y - b16yoffset;
|
|
quad[1].y = b16y + b16yoffset;
|
|
|
|
b16y = itob16(line.pt2.y);
|
|
quad[2].y = b16y - b16yoffset;
|
|
quad[3].y = b16y + b16yoffset;
|
|
|
|
if (line.pt1.x < line.pt2.x)
|
|
{
|
|
/* Line is going "south east". Get the X positions of each point */
|
|
|
|
b16x = itob16(line.pt1.x);
|
|
quad[0].x = b16x + b16xoffset;
|
|
quad[1].x = b16x - b16xoffset;
|
|
|
|
b16x = itob16(line.pt2.x);
|
|
quad[2].x = b16x + b16xoffset;
|
|
quad[3].x = b16x - b16xoffset;
|
|
|
|
ginfo("Southeast: quad (%08x,%08x),(%08x,%08x),(%08x,%08x),(%08x,%08x)\n",
|
|
quad[0].x, quad[0].y, quad[1].x, quad[1].y,
|
|
quad[2].x, quad[2].y, quad[3].x, quad[3].y);
|
|
|
|
/* Now we can form the trapezoids. The top of the first trapezoid
|
|
* (triangle) is at quad[0]
|
|
*/
|
|
|
|
traps[0].top.x1 = quad[0].x;
|
|
traps[0].top.x2 = quad[0].x;
|
|
traps[0].top.y = b16toi(quad[0].y + b16HALF);
|
|
|
|
/* The bottom of the first trapezoid (triangle) may be either at
|
|
* quad[1] or quad[2], depending upon orientation.
|
|
*/
|
|
|
|
if (quad[1]. y < quad[2].y)
|
|
{
|
|
/* quad[1] is at the bottom left of the triangle. Interpolate
|
|
* to get the corresponding point on the right side.
|
|
*
|
|
* Interpolation is from quad[0] along the line quad[0]->quad[2]
|
|
* which as the same slope as the line (positive)
|
|
*/
|
|
|
|
b16dxdy = itob16(iwidth) / iheight;
|
|
|
|
traps[0].bot.x1 = quad[1].x;
|
|
traps[0].bot.x2 = nxgl_interpolate(quad[0].x, quad[1].y - quad[0].y, b16dxdy);
|
|
traps[0].bot.y = b16toi(quad[1].y + b16HALF);
|
|
|
|
/* quad[1] is at the top left of the second trapezoid. quad[2} is
|
|
* at the bottom right of the second trapezoid. Interpolate to get
|
|
* corresponding point on the left side.
|
|
*
|
|
* Interpolation is from quad[1] along the line quad[1]->quad[3]
|
|
* which as the same slope as the line (positive)
|
|
*/
|
|
|
|
traps[1].top.x1 = traps[0].bot.x1;
|
|
traps[1].top.x2 = traps[0].bot.x2;
|
|
traps[1].top.y = traps[0].bot.y;
|
|
|
|
traps[1].bot.x1 = nxgl_interpolate(traps[1].top.x1, quad[2].y - quad[1].y, b16dxdy);
|
|
traps[1].bot.x2 = quad[2].x;
|
|
traps[1].bot.y = b16toi(quad[2].y + b16HALF);
|
|
}
|
|
else
|
|
{
|
|
/* quad[2] is at the bottom right of the triangle. Interpolate
|
|
* to get the corresponding point on the left side.
|
|
*
|
|
* Interpolation is from quad[0] along the line quad[0]->quad[1]
|
|
* which orthogonal to the slope of the line (and negative)
|
|
*/
|
|
|
|
b16dxdy = -itob16(iheight) / iwidth;
|
|
|
|
traps[0].bot.x1 = nxgl_interpolate(quad[0].x, quad[2].y - quad[0].y, b16dxdy);
|
|
traps[0].bot.x2 = quad[2].x;
|
|
traps[0].bot.y = b16toi(quad[2].y + b16HALF);
|
|
|
|
/* quad[2] is at the top right of the second trapezoid. quad[1} is
|
|
* at the bottom left of the second trapezoid. Interpolate to get
|
|
* corresponding point on the right side.
|
|
*
|
|
* Interpolation is from quad[2] along the line quad[2]->quad[3]
|
|
* which as the same slope as the previous interpolation.
|
|
*/
|
|
|
|
traps[1].top.x1 = traps[0].bot.x1;
|
|
traps[1].top.x2 = traps[0].bot.x2;
|
|
traps[1].top.y = traps[0].bot.y;
|
|
|
|
traps[1].bot.x1 = quad[1].x;
|
|
traps[1].bot.x2 = nxgl_interpolate(traps[1].top.x2, quad[1].y - quad[2].y, b16dxdy);
|
|
traps[1].bot.y = b16toi(quad[1].y + b16HALF);
|
|
}
|
|
|
|
/* The final trapezond (triangle) at the bottom is new well defined */
|
|
|
|
traps[2].top.x1 = traps[1].bot.x1;
|
|
traps[2].top.x2 = traps[1].bot.x2;
|
|
traps[2].top.y = traps[1].bot.y;
|
|
|
|
traps[2].bot.x1 = quad[3].x;
|
|
traps[2].bot.x2 = quad[3].x;
|
|
traps[2].bot.y = b16toi(quad[3].y + b16HALF);
|
|
}
|
|
else
|
|
{
|
|
/* Get the X positions of each point */
|
|
|
|
b16x = itob16(line.pt1.x);
|
|
quad[0].x = b16x - b16xoffset;
|
|
quad[1].x = b16x + b16xoffset;
|
|
|
|
b16x = itob16(line.pt2.x);
|
|
quad[2].x = b16x - b16xoffset;
|
|
quad[3].x = b16x + b16xoffset;
|
|
|
|
ginfo("Southwest: quad (%08x,%08x),(%08x,%08x),(%08x,%08x),(%08x,%08x)\n",
|
|
quad[0].x, quad[0].y, quad[1].x, quad[1].y,
|
|
quad[2].x, quad[2].y, quad[3].x, quad[3].y);
|
|
|
|
/* Now we can form the trapezoids. The top of the first trapezoid
|
|
* (triangle) is at quad[0]
|
|
*/
|
|
|
|
traps[0].top.x1 = quad[0].x;
|
|
traps[0].top.x2 = quad[0].x;
|
|
traps[0].top.y = b16toi(quad[0].y + b16HALF);
|
|
|
|
/* The bottom of the first trapezoid (triangle) may be either at
|
|
* quad[1] or quad[2], depending upon orientation.
|
|
*/
|
|
|
|
if (quad[1].y < quad[2].y)
|
|
{
|
|
/* quad[1] is at the bottom right of the triangle. Interpolate
|
|
* to get the corresponding point on the left side.
|
|
*
|
|
* Interpolation is from quad[0] along the line quad[0]->quad[2]
|
|
* which as the same slope as the line (negative)
|
|
*/
|
|
|
|
b16dxdy = -itob16(iwidth) / iheight;
|
|
|
|
traps[0].bot.x1 = nxgl_interpolate(traps[0].top.x1, quad[1].y - quad[0].y, b16dxdy);
|
|
traps[0].bot.x2 = quad[1].x;
|
|
traps[0].bot.y = b16toi(quad[1].y + b16HALF);
|
|
|
|
/* quad[1] is at the top right of the second trapezoid. quad[2} is
|
|
* at the bottom left of the second trapezoid. Interpolate to get
|
|
* corresponding point on the right side.
|
|
*
|
|
* Interpolation is from quad[1] along the line quad[1]->quad[3]
|
|
* which as the same slope as the line (negative)
|
|
*/
|
|
|
|
traps[1].top.x1 = traps[0].bot.x1;
|
|
traps[1].top.x2 = traps[0].bot.x2;
|
|
traps[1].top.y = traps[0].bot.y;
|
|
|
|
traps[1].bot.x1 = quad[2].x;
|
|
traps[1].bot.x2 = nxgl_interpolate(traps[1].top.x2, quad[2].y - quad[1].y, b16dxdy);
|
|
traps[1].bot.y = b16toi(quad[2].y + b16HALF);
|
|
}
|
|
else
|
|
{
|
|
/* quad[2] is at the bottom left of the triangle. Interpolate
|
|
* to get the corresponding point on the right side.
|
|
*
|
|
* Interpolation is from quad[0] along the line quad[0]->quad[1]
|
|
* which orthogonal to the slope of the line (and positive)
|
|
*/
|
|
|
|
b16dxdy = itob16(iheight) / iwidth;
|
|
|
|
traps[0].bot.x1 = quad[2].x;
|
|
traps[0].bot.x2 = nxgl_interpolate(traps[0].top.x2, quad[2].y - quad[0].y, b16dxdy);
|
|
traps[0].bot.y = b16toi(quad[2].y + b16HALF);
|
|
|
|
/* quad[2] is at the top left of the second trapezoid. quad[1} is
|
|
* at the bottom right of the second trapezoid. Interpolate to get
|
|
* corresponding point on the left side.
|
|
*
|
|
* Interpolation is from quad[2] along the line quad[2]->quad[3]
|
|
* which as the same slope as the previous interpolation.
|
|
*/
|
|
|
|
traps[1].top.x1 = traps[0].bot.x1;
|
|
traps[1].top.x2 = traps[0].bot.x2;
|
|
traps[1].top.y = traps[0].bot.y;
|
|
|
|
traps[1].bot.x1 = nxgl_interpolate(traps[1].top.x1, quad[1].y - quad[2].y, b16dxdy);
|
|
traps[1].bot.x2 = quad[1].x;
|
|
traps[1].bot.y = b16toi(quad[1].y + b16HALF);
|
|
}
|
|
|
|
/* The final trapezond (triangle) at the bottom is new well defined */
|
|
|
|
traps[2].top.x1 = traps[1].bot.x1;
|
|
traps[2].top.x2 = traps[1].bot.x2;
|
|
traps[2].top.y = traps[1].bot.y;
|
|
|
|
traps[2].bot.x1 = quad[3].x;
|
|
traps[2].bot.x2 = quad[3].x;
|
|
traps[2].bot.y = b16toi(quad[3].y + b16HALF);
|
|
}
|
|
|
|
ginfo("traps[0]: (%08x,%08x,%d),(%08x,%08x,%d)\n",
|
|
traps[0].top.x1, traps[0].top.x2, traps[0].top.y,
|
|
traps[0].bot.x1, traps[0].bot.x2, traps[0].bot.y);
|
|
ginfo("traps[1]: (%08x,%08x,%d),(%08x,%08x,%d)\n",
|
|
traps[1].top.x1, traps[1].top.x2, traps[1].top.y,
|
|
traps[1].bot.x1, traps[1].bot.x2, traps[1].bot.y);
|
|
ginfo("traps[2]: (%08x,%08x,%d),(%08x,%08x,%d)\n",
|
|
traps[2].top.x1, traps[2].top.x2, traps[2].top.y,
|
|
traps[2].bot.x1, traps[2].bot.x2, traps[2].bot.y);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* The line is too vertical to have any significant triangular top or
|
|
* bottom. Just return the center parallelogram.
|
|
*/
|
|
|
|
traps[1].top.x1 = itob16(line.pt1.x - (linewidth >> 1));
|
|
traps[1].top.x2 = traps[1].top.x1 + itob16(linewidth - 1);
|
|
traps[1].top.y = line.pt1.y;
|
|
|
|
traps[1].bot.x1 = itob16(line.pt2.x - (linewidth >> 1));
|
|
traps[1].bot.x2 = traps[1].bot.x1 + itob16(linewidth - 1);
|
|
traps[1].bot.y = line.pt2.y;
|
|
|
|
ginfo("Horizontal traps[1]: (%08x,%08x,%d),(%08x,%08x, %d)\n",
|
|
traps[1].top.x1, traps[1].top.x2, traps[1].top.y,
|
|
traps[1].bot.x1, traps[1].bot.x2, traps[1].bot.y);
|
|
|
|
return 1;
|
|
}
|