incubator-nuttx/sched/signal/sig_pselect.c

153 lines
5.4 KiB
C

/****************************************************************************
* sched/signal/sig_pselect.c
*
* Copyright (C) 2018 Pinecone Inc. All rights reserved.
* Author: Xiang Xiao <xiaoxiang@pinecone.net>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name NuttX nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <sys/select.h>
#include <sys/time.h>
#include "sched/sched.h"
#include "signal/signal.h"
/****************************************************************************
* Public Functions
****************************************************************************/
/****************************************************************************
* Name: pselect
*
* Description:
* pselect() allows a program to monitor multiple file descriptors, waiting
* until one or more of the file descriptors become "ready" for some class
* of I/O operation (e.g., input possible). A file descriptor is
* considered ready if it is possible to perform the corresponding I/O
* operation (e.g., read(2)) without blocking.
*
* Input Parameters:
* nfds - the maximum fd number (+1) of any descriptor in any of the
* three sets.
* readfds - the set of descriptions to monitor for read-ready events
* writefds - the set of descriptions to monitor for write-ready events
* exceptfds - the set of descriptions to monitor for error events
* timeout - Return at this time if none of these events of interest
* occur.
* sigmask - Replace the current signal mask temporarily during execution
*
* Returned Value:
* 0: Timer expired
* >0: The number of bits set in the three sets of descriptors
* -1: An error occurred (errno will be set appropriately)
*
****************************************************************************/
int pselect(int nfds, FAR fd_set *readfds, FAR fd_set *writefds,
FAR fd_set *exceptfds, FAR const struct timespec *timeout,
FAR const sigset_t *sigmask)
{
FAR struct tcb_s *rtcb = this_task();
sigset_t saved_sigprocmask;
irqstate_t flags;
int ret = ERROR;
/* Several operations must be performed below: We must determine if any
* signal is pending and, if not, wait for the signal. Since signals can
* be posted from the interrupt level, there is a race condition that
* can only be eliminated by disabling interrupts!
*/
flags = enter_critical_section();
/* Save a copy of the old sigprocmask and install
* the new (temporary) sigprocmask
*/
saved_sigprocmask = rtcb->sigprocmask;
if (sigmask)
{
rtcb->sigprocmask = *sigmask;
}
rtcb->sigwaitmask = NULL_SIGNAL_SET;
/* Check if there is a pending signal corresponding to one of the
* signals that will be unblocked by the new sigprocmask.
*/
if (nxsig_unmask_pendingsignal())
{
/* Dispatching one or more of the signals is sufficient to cause
* us to not wait. Restore the original sigprocmask.
*/
rtcb->sigprocmask = saved_sigprocmask;
leave_critical_section(flags);
set_errno(EINTR);
}
else
{
FAR struct timeval *timeval = NULL;
struct timeval timeval_buf;
/* And call select to do the real work */
if (timeout)
{
timeval_buf.tv_sec = timeout->tv_sec;
timeval_buf.tv_usec = timeout->tv_nsec / 1000;
timeval = &timeval_buf;
}
ret = select(nfds, readfds, writefds, exceptfds, timeval);
/* We are running again, restore the original sigprocmask */
rtcb->sigprocmask = saved_sigprocmask;
leave_critical_section(flags);
/* Now, handle the (rare?) case where (a) a blocked signal was received
* while the task was suspended but (b) restoring the original
* sigprocmask will unblock the signal.
*/
nxsig_unmask_pendingsignal();
}
return ret;
}