incubator-nuttx/sched/irq/irq_csection.c

655 lines
22 KiB
C

/****************************************************************************
* sched/irq/irq_csection.c
*
* Copyright (C) 2016-2017 Gregory Nutt. All rights reserved.
* Author: Gregory Nutt <gnutt@nuttx.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name NuttX nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <sys/types.h>
#include <nuttx/init.h>
#include <nuttx/spinlock.h>
#include <nuttx/sched_note.h>
#include <arch/irq.h>
#include "sched/sched.h"
#include "irq/irq.h"
#if defined(CONFIG_SMP) || defined(CONFIG_SCHED_INSTRUMENTATION_CSECTION)
/****************************************************************************
* Public Data
****************************************************************************/
#ifdef CONFIG_SMP
/* This is the spinlock that enforces critical sections when interrupts are
* disabled.
*/
volatile spinlock_t g_cpu_irqlock SP_SECTION = SP_UNLOCKED;
/* Used to keep track of which CPU(s) hold the IRQ lock. */
volatile spinlock_t g_cpu_irqsetlock SP_SECTION;
volatile cpu_set_t g_cpu_irqset SP_SECTION;
/* Handles nested calls to enter_critical section from interrupt handlers */
volatile uint8_t g_cpu_nestcount[CONFIG_SMP_NCPUS];
#endif
/****************************************************************************
* Private Functions
****************************************************************************/
/****************************************************************************
* Name: irq_waitlock
*
* Description:
* Spin to get g_irq_waitlock, handling a known deadlock condition:
*
* A deadlock may occur if enter_critical_section is called from an
* interrupt handler. Suppose:
*
* - CPUn is in a critical section and has the g_cpu_irqlock spinlock.
* - CPUm takes an interrupt and attempts to enter the critical section.
* - It spins waiting on g_cpu_irqlock with interrupts disabled.
* - CPUn calls up_cpu_pause() to pause operation on CPUm. This will
* issue an inter-CPU interrupt to CPUm
* - But interrupts are disabled on CPUm so the up_cpu_pause() is never
* handled, causing the deadlock.
*
* This same deadlock can occur in the normal tasking case:
*
* - A task on CPUn enters a critical section and has the g_cpu_irqlock
* spinlock.
* - Another task on CPUm attempts to enter the critical section but has
* to wait, spinning to get g_cpu_irqlock with interrupts disabled.
* - The task on CPUn causes a new task to become ready-torun and the
* scheduler selects CPUm. CPUm is requested to pause via a pause
* interrupt.
* - But the task on CPUm is also attempting to enter the critical
* section. Since it is spinning with interrupts disabled, CPUm cannot
* process the pending pause interrupt, causing the deadlock.
*
* This function detects this deadlock condition while spinning with \
* interrupts disabled.
*
* Input Parameters:
* cpu - The index of CPU that is trying to enter the critical section.
*
* Returned Value:
* True: The g_cpu_irqlock spinlock has been taken.
* False: The g_cpu_irqlock spinlock has not been taken yet, but there is
* a pending pause interrupt request.
*
****************************************************************************/
#ifdef CONFIG_SMP
static inline bool irq_waitlock(int cpu)
{
#ifdef CONFIG_SCHED_INSTRUMENTATION_SPINLOCKS
FAR struct tcb_s *tcb = this_task();
/* Notify that we are waiting for a spinlock */
sched_note_spinlock(tcb, &g_cpu_irqlock);
#endif
/* Duplicate the spin_lock() logic from spinlock.c, but adding the check
* for the deadlock condition.
*/
while (spin_trylock(&g_cpu_irqlock) == SP_LOCKED)
{
/* Is a pause request pending? */
if (up_cpu_pausereq(cpu))
{
/* Yes.. some other CPU is requesting to pause this CPU!
* Abort the wait and return false.
*/
#ifdef CONFIG_SCHED_INSTRUMENTATION_SPINLOCKS
/* Notify that we are waiting for a spinlock */
sched_note_spinabort(tcb, &g_cpu_irqlock);
#endif
return false;
}
SP_DSB();
}
/* We have g_cpu_irqlock! */
#ifdef CONFIG_SCHED_INSTRUMENTATION_SPINLOCKS
/* Notify that we have the spinlock */
sched_note_spinlocked(tcb, &g_cpu_irqlock);
#endif
SP_DMB();
return true;
}
#endif
/****************************************************************************
* Public Functions
****************************************************************************/
/****************************************************************************
* Name: enter_critical_section
*
* Description:
* Take the CPU IRQ lock and disable interrupts on all CPUs. A thread-
* specific counter is increment to indicate that the thread has IRQs
* disabled and to support nested calls to enter_critical_section().
*
****************************************************************************/
#ifdef CONFIG_SMP
irqstate_t enter_critical_section(void)
{
FAR struct tcb_s *rtcb;
irqstate_t ret;
int cpu;
/* Disable interrupts.
*
* NOTE 1: Ideally this should disable interrupts on all CPUs, but most
* architectures only support disabling interrupts on the local CPU.
* NOTE 2: Interrupts may already be disabled, but we call up_irq_save()
* unconditionally because we need to return valid interrupt status in any
* event.
* NOTE 3: We disable local interrupts BEFORE taking the spinlock in order
* to prevent possible waits on the spinlock from interrupt handling on
* the local CPU.
*/
try_again:
ret = up_irq_save();
/* Verify that the system has sufficiently initialized so that the task
* lists are valid.
*/
if (g_os_initstate >= OSINIT_TASKLISTS)
{
/* If called from an interrupt handler, then just take the spinlock.
* If we are already in a critical section, this will lock the CPU
* in the interrupt handler. Sounds worse than it is.
*/
if (up_interrupt_context())
{
/* We are in an interrupt handler. How can this happen?
*
* 1. We were not in a critical section when the interrupt
* occurred. In this case, the interrupt was entered with:
*
* g_cpu_irqlock = SP_UNLOCKED.
* g_cpu_nestcount = 0
* All CPU bits in g_cpu_irqset should be zero
*
* 2. We were in a critical section and interrupts on this
* this CPU were disabled -- this is an impossible case.
*
* 3. We were in critical section, but up_irq_save() only
* disabled local interrupts on a different CPU;
* Interrupts could still be enabled on this CPU.
*
* g_cpu_irqlock = SP_LOCKED.
* g_cpu_nestcount = 0
* The bit in g_cpu_irqset for this CPU should be zero
*
* 4. An extension of 3 is that we may be re-entered numerous
* times from the same interrupt handler. In that case:
*
* g_cpu_irqlock = SP_LOCKED.
* g_cpu_nestcount > 0
* The bit in g_cpu_irqset for this CPU should be zero
*
* NOTE: However, the interrupt entry conditions can change due
* to previous processing by the interrupt handler that may
* instantiate a new thread that has irqcount > 0 and may then
* set the bit in g_cpu_irqset and g_cpu_irqlock = SP_LOCKED
*/
/* Handle nested calls to enter_critical_section() from the same
* interrupt.
*/
cpu = this_cpu();
if (g_cpu_nestcount[cpu] > 0)
{
DEBUGASSERT(spin_islocked(&g_cpu_irqlock) &&
g_cpu_nestcount[cpu] < UINT8_MAX);
g_cpu_nestcount[cpu]++;
}
/* This is the first call to enter_critical_section from the
* interrupt handler.
*/
else
{
/* Make sure that the g_cpu_irqlock() was not already set
* by previous logic on this CPU that was executed by the
* interrupt handler. We know that the bit in g_cpu_irqset
* for this CPU was zero on entry into the interrupt handler,
* so if it is non-zero now then we know that was the case.
*/
if ((g_cpu_irqset & (1 << cpu)) == 0)
{
/* Wait until we can get the spinlock (meaning that we are
* no longer blocked by the critical section).
*/
if (!irq_waitlock(cpu))
{
/* We are in a deadlock condition due to a pending
* pause request interrupt request. Break the
* deadlock by handling the pause interrupt now.
*/
DEBUGVERIFY(up_cpu_paused(cpu));
}
}
/* In any event, the nesting count is now one */
g_cpu_nestcount[cpu] = 1;
/* Also set the CPU bit so that other CPUs will be aware that this
* CPU holds the critical section.
*/
spin_setbit(&g_cpu_irqset, cpu, &g_cpu_irqsetlock,
&g_cpu_irqlock);
}
}
else
{
/* Normal tasking environment. */
/* Do we already have interrupts disabled? */
rtcb = this_task();
DEBUGASSERT(rtcb != NULL);
if (rtcb->irqcount > 0)
{
/* Yes... make sure that the spinlock is set and increment the
* IRQ lock count.
*
* NOTE: If irqcount > 0 then (1) we are in a critical section, and
* (2) this CPU should hold the lock.
*/
DEBUGASSERT(spin_islocked(&g_cpu_irqlock) &&
(g_cpu_irqset & (1 << this_cpu())) != 0 &&
rtcb->irqcount < INT16_MAX);
rtcb->irqcount++;
}
else
{
/* If we get here with irqcount == 0, then we know that the
* current task running on this CPU is not in a critical
* section. However other tasks on other CPUs may be in a
* critical section. If so, we must wait until they release
* the spinlock.
*/
cpu = this_cpu();
DEBUGASSERT((g_cpu_irqset & (1 << cpu)) == 0);
if (!irq_waitlock(cpu))
{
/* We are in a deadlock condition due to a pending pause
* request interrupt. Re-enable interrupts on this CPU
* and try again. Briefly re-enabling interrupts should
* be sufficient to permit processing the pending pause
* request.
*
* NOTE: This should never happen on architectures like
* the Cortex-A; the inter-CPU interrupt (SGI) is not
* maskable.
*/
up_irq_restore(ret);
goto try_again;
}
/* The set the lock count to 1.
*
* Interrupts disables must follow a stacked order. We
* cannot other context switches to re-order the enabling
* disabling of interrupts.
*
* The scheduler accomplishes this by treating the irqcount
* like lockcount: Both will disable pre-emption.
*/
spin_setbit(&g_cpu_irqset, cpu, &g_cpu_irqsetlock,
&g_cpu_irqlock);
rtcb->irqcount = 1;
#ifdef CONFIG_SCHED_INSTRUMENTATION_CSECTION
/* Note that we have entered the critical section */
sched_note_csection(rtcb, true);
#endif
}
}
}
/* Return interrupt status */
return ret;
}
#else /* defined(CONFIG_SCHED_INSTRUMENTATION_CSECTION) */
irqstate_t enter_critical_section(void)
{
irqstate_t ret;
/* Disable interrupts */
ret = up_irq_save();
/* Check if we were called from an interrupt handler and that the task
* lists have been initialized.
*/
if (!up_interrupt_context() && g_os_initstate >= OSINIT_TASKLISTS)
{
FAR struct tcb_s *rtcb = this_task();
DEBUGASSERT(rtcb != NULL);
/* Yes.. Note that we have entered the critical section */
sched_note_csection(rtcb, true);
}
/* Return interrupt status */
return ret;
}
#endif
/****************************************************************************
* Name: leave_critical_section
*
* Description:
* Decrement the IRQ lock count and if it decrements to zero then release
* the spinlock.
*
****************************************************************************/
#ifdef CONFIG_SMP
void leave_critical_section(irqstate_t flags)
{
int cpu;
/* Verify that the system has sufficiently initialized so that the task
* lists are valid.
*/
if (g_os_initstate >= OSINIT_TASKLISTS)
{
/* If called from an interrupt handler, then just release the
* spinlock. The interrupt handling logic should already hold the
* spinlock if enter_critical_section() has been called. Unlocking
* the spinlock will allow interrupt handlers on other CPUs to execute
* again.
*/
if (up_interrupt_context())
{
/* We are in an interrupt handler. Check if the last call to
* enter_critical_section() was nested.
*/
cpu = this_cpu();
if (g_cpu_nestcount[cpu] > 1)
{
/* Yes.. then just decrement the nesting count */
DEBUGASSERT(spin_islocked(&g_cpu_irqlock));
g_cpu_nestcount[cpu]--;
}
else
{
/* No, not nested. Restore the g_cpu_irqset for this CPU
* and release the spinlock (if necessary).
*/
DEBUGASSERT(spin_islocked(&g_cpu_irqlock) &&
g_cpu_nestcount[cpu] == 1);
FAR struct tcb_s *rtcb = this_task();
DEBUGASSERT(rtcb != NULL);
if (rtcb->irqcount <= 0)
{
spin_clrbit(&g_cpu_irqset, cpu, &g_cpu_irqsetlock,
&g_cpu_irqlock);
}
g_cpu_nestcount[cpu] = 0;
}
}
else
{
FAR struct tcb_s *rtcb = this_task();
DEBUGASSERT(rtcb != NULL && rtcb->irqcount > 0);
/* Normal tasking context. We need to coordinate with other
* tasks.
*
* Will we still have interrupts disabled after decrementing the
* count?
*/
if (rtcb->irqcount > 1)
{
/* Yes... the spinlock should remain set */
DEBUGASSERT(spin_islocked(&g_cpu_irqlock));
rtcb->irqcount--;
}
else
{
#ifdef CONFIG_SCHED_INSTRUMENTATION_CSECTION
/* No.. Note that we have left the critical section */
sched_note_csection(rtcb, false);
#endif
/* Decrement our count on the lock. If all CPUs have
* released, then unlock the spinlock.
*/
cpu = this_cpu();
DEBUGASSERT(spin_islocked(&g_cpu_irqlock) &&
(g_cpu_irqset & (1 << cpu)) != 0);
/* Check if releasing the lock held by this CPU will unlock the
* critical section.
*/
if ((g_cpu_irqset & ~(1 << cpu)) == 0)
{
/* Yes.. Check if there are pending tasks and that pre-emption
* is also enabled. This is necessary because we may have
* deferred the up_release_pending() call in sched_unlock()
* because we were within a critical section then.
*/
if (g_pendingtasks.head != NULL &&
!spin_islocked(&g_cpu_schedlock))
{
/* Release any ready-to-run tasks that have collected
* in g_pendingtasks. NOTE: This operation has a very
* high likelihood of causing this task to be switched
* out!
*/
up_release_pending();
}
}
/* Now, possibly on return from a context switch, clear our
* count on the lock. If all CPUs have released the lock,
* then unlock the global IRQ spinlock.
*/
rtcb->irqcount = 0;
spin_clrbit(&g_cpu_irqset, cpu, &g_cpu_irqsetlock,
&g_cpu_irqlock);
/* Have all CPUs released the lock? */
}
}
}
/* Restore the previous interrupt state which may still be interrupts
* disabled (but we don't have a mechanism to verify that now)
*/
up_irq_restore(flags);
}
#else /* defined(CONFIG_SCHED_INSTRUMENTATION_CSECTION) */
void leave_critical_section(irqstate_t flags)
{
/* Check if we were called from an interrupt handler and that the tasks
* lists have been initialized.
*/
if (!up_interrupt_context() && g_os_initstate >= OSINIT_TASKLISTS)
{
FAR struct tcb_s *rtcb = this_task();
DEBUGASSERT(rtcb != NULL);
/* Yes.. Note that we have left the critical section */
sched_note_csection(rtcb, false);
}
/* Restore the previous interrupt state. */
up_irq_restore(flags);
}
#endif
/****************************************************************************
* Name: irq_cpu_locked
*
* Description:
* Test if the IRQ lock set OR if this CPU holds the IRQ lock
* There is an interaction with pre-emption controls and IRQ locking:
* Even if the pre-emption is enabled, tasks will be forced to pend if
* the IRQ lock is also set UNLESS the CPU starting the task is the
* holder of the IRQ lock.
*
* Inputs:
* rtcb - Points to the blocked TCB that is ready-to-run
*
* Return Value:
* true - IRQs are locked by a different CPU.
* false - IRQs are unlocked OR if they are locked BUT this CPU
* is the holder of the lock.
*
* Warning: This values are volatile at only valid at the instance that
* the CPU set was queried.
*
****************************************************************************/
#ifdef CONFIG_SMP
bool irq_cpu_locked(int cpu)
{
cpu_set_t irqset;
/* g_cpu_irqset is not valid in early phases of initialization */
if (g_os_initstate < OSINIT_OSREADY)
{
/* We are still single threaded. In either state of g_cpu_irqlock,
* the correct return value should always be false.
*/
return false;
}
/* Test if g_cpu_irqlock is locked. We don't really need to use check
* g_cpu_irqlock to do this, we can use the g_cpu_set.
*
* Sample the g_cpu_irqset once. That is an atomic operation. All
* subsequent operations will operate on the sampled cpu set.
*/
irqset = (cpu_set_t)g_cpu_irqset;
if (irqset != 0)
{
/* Some CPU holds the lock. So g_cpu_irqlock should be locked.
* Return false if the 'cpu' is the holder of the lock; return
* true if g_cpu_irqlock is locked, but this CPU is not the
* holder of the lock.
*/
return ((irqset & (1 << cpu)) == 0);
}
/* No CPU holds the lock */
else
{
/* In this case g_cpu_irqlock should be unlocked. However, if
* the lock was established in the interrupt handler AND there are
* no bits set in g_cpu_irqset, that probabaly means only that
* critical section was established from an interrupt handler.
* Return false in either case.
*/
return false;
}
}
#endif
#endif /* CONFIG_SMP || CONFIG_SCHED_INSTRUMENTATION_CSECTION */