incubator-nuttx/arch/arm/include/armv8-m/irq.h

402 lines
9.8 KiB
C

/****************************************************************************
* arch/arm/include/armv8-m/irq.h
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership. The
* ASF licenses this file to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance with the
* License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
****************************************************************************/
/* This file should never be included directly but, rather, only indirectly
* through nuttx/irq.h
*/
#ifndef __ARCH_ARM_INCLUDE_ARMV8_M_IRQ_H
#define __ARCH_ARM_INCLUDE_ARMV8_M_IRQ_H
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <nuttx/irq.h>
#ifndef __ASSEMBLY__
# include <nuttx/compiler.h>
# include <arch/armv8-m/nvicpri.h>
# include <stdint.h>
#endif
/* Included implementation-dependent register save structure layouts */
#ifndef CONFIG_ARMV8M_LAZYFPU
# include <arch/armv8-m/irq_cmnvector.h>
#else
# include <arch/armv8-m/irq_lazyfpu.h>
#endif
/****************************************************************************
* Pre-processor Definitions
****************************************************************************/
/* Configuration ************************************************************/
/* If this is a kernel build, how many nested system calls should we
* support?
*/
#ifndef CONFIG_SYS_NNEST
# define CONFIG_SYS_NNEST 2
#endif
/* Alternate register names *************************************************/
#define REG_A1 REG_R0
#define REG_A2 REG_R1
#define REG_A3 REG_R2
#define REG_A4 REG_R3
#define REG_V1 REG_R4
#define REG_V2 REG_R5
#define REG_V3 REG_R6
#define REG_V4 REG_R7
#define REG_V5 REG_R8
#define REG_V6 REG_R9
#define REG_V7 REG_R10
#define REG_SB REG_R9
#define REG_SL REG_R10
#define REG_FP REG_R11
#define REG_IP REG_R12
#define REG_SP REG_R13
#define REG_LR REG_R14
#define REG_PC REG_R15
/* The PIC register is usually R10. It can be R9 is stack checking is enabled
* or if the user changes it with -mpic-register on the GCC command line.
*/
#define REG_PIC REG_R10
/****************************************************************************
* Public Types
****************************************************************************/
#ifndef __ASSEMBLY__
/* This structure represents the return state from a system call */
#ifdef CONFIG_LIB_SYSCALL
struct xcpt_syscall_s
{
uint32_t excreturn; /* The EXC_RETURN value */
uint32_t sysreturn; /* The return PC */
};
#endif
/* The following structure is included in the TCB and defines the complete
* state of the thread.
*/
struct xcptcontext
{
/* The following function pointer is non-zero if there
* are pending signals to be processed.
*/
FAR void *sigdeliver; /* Actual type is sig_deliver_t */
/* These are saved copies of LR, PRIMASK, and xPSR used during
* signal processing.
*
* REVISIT: Because there is only one copy of these save areas,
* only a single signal handler can be active. This precludes
* queuing of signal actions. As a result, signals received while
* another signal handler is executing will be ignored!
*/
uint32_t saved_pc;
#ifdef CONFIG_ARMV8M_USEBASEPRI
uint32_t saved_basepri;
#else
uint32_t saved_primask;
#endif
uint32_t saved_xpsr;
#ifdef CONFIG_BUILD_PROTECTED
uint32_t saved_lr;
/* This is the saved address to use when returning from a user-space
* signal handler.
*/
uint32_t sigreturn;
#endif
#ifdef CONFIG_LIB_SYSCALL
/* The following array holds the return address and the exc_return value
* needed to return from each nested system call.
*/
uint8_t nsyscalls;
struct xcpt_syscall_s syscall[CONFIG_SYS_NNEST];
#endif
/* Register save area */
uint32_t regs[XCPTCONTEXT_REGS];
};
#endif
/****************************************************************************
* Inline functions
****************************************************************************/
#ifndef __ASSEMBLY__
/* Name: up_irq_save, up_irq_restore, and friends.
*
* NOTE: This function should never be called from application code and,
* as a general rule unless you really know what you are doing, this
* function should not be called directly from operation system code either:
* Typically, the wrapper functions, enter_critical_section() and
* leave_critical section(), are probably what you really want.
*/
/* Get/set the PRIMASK register */
static inline uint8_t getprimask(void) inline_function;
static inline uint8_t getprimask(void)
{
uint32_t primask;
__asm__ __volatile__
(
"\tmrs %0, primask\n"
: "=r" (primask)
:
: "memory");
return (uint8_t)primask;
}
static inline void setprimask(uint32_t primask) inline_function;
static inline void setprimask(uint32_t primask)
{
__asm__ __volatile__
(
"\tmsr primask, %0\n"
:
: "r" (primask)
: "memory");
}
static inline void cpsie(void) inline_function;
static inline void cpsie(void)
{
__asm__ __volatile__ ("\tcpsie i\n");
}
static inline void cpsid(void) inline_function;
static inline void cpsid(void)
{
__asm__ __volatile__ ("\tcpsid i\n");
}
/* Get/set the BASEPRI register. The BASEPRI register defines the minimum
* priority for exception processing. When BASEPRI is set to a nonzero
* value, it prevents the activation of all exceptions with the same or
* lower priority level as the BASEPRI value.
*/
static inline uint8_t getbasepri(void) inline_function;
static inline uint8_t getbasepri(void)
{
uint32_t basepri;
__asm__ __volatile__
(
"\tmrs %0, basepri\n"
: "=r" (basepri)
:
: "memory");
return (uint8_t)basepri;
}
static inline void setbasepri(uint32_t basepri) inline_function;
static inline void setbasepri(uint32_t basepri)
{
__asm__ __volatile__
(
"\tmsr basepri, %0\n"
:
: "r" (basepri)
: "memory");
}
# define raisebasepri(b) setbasepri(b);
/* Disable IRQs */
static inline void up_irq_disable(void) inline_function;
static inline void up_irq_disable(void)
{
#ifdef CONFIG_ARMV8M_USEBASEPRI
/* Probably raising priority */
raisebasepri(NVIC_SYSH_DISABLE_PRIORITY);
#else
__asm__ __volatile__ ("\tcpsid i\n");
#endif
}
/* Save the current primask state & disable IRQs */
static inline irqstate_t up_irq_save(void) inline_function;
static inline irqstate_t up_irq_save(void)
{
#ifdef CONFIG_ARMV8M_USEBASEPRI
/* Probably raising priority */
uint8_t basepri = getbasepri();
raisebasepri(NVIC_SYSH_DISABLE_PRIORITY);
return (irqstate_t)basepri;
#else
unsigned short primask;
/* Return the current value of primask register and set
* bit 0 of the primask register to disable interrupts
*/
__asm__ __volatile__
(
"\tmrs %0, primask\n"
"\tcpsid i\n"
: "=r" (primask)
:
: "memory");
return primask;
#endif
}
/* Enable IRQs */
static inline void up_irq_enable(void) inline_function;
static inline void up_irq_enable(void)
{
/* In this case, we are always retaining or lowering the priority value */
setbasepri(NVIC_SYSH_PRIORITY_MIN);
__asm__ __volatile__ ("\tcpsie i\n");
}
/* Restore saved primask state */
static inline void up_irq_restore(irqstate_t flags) inline_function;
static inline void up_irq_restore(irqstate_t flags)
{
#ifdef CONFIG_ARMV8M_USEBASEPRI
/* In this case, we are always retaining or lowering the priority value */
setbasepri((uint32_t)flags);
#else
/* If bit 0 of the primask is 0, then we need to restore
* interrupts.
*/
__asm__ __volatile__
(
"\ttst %0, #1\n"
"\tbne.n 1f\n"
"\tcpsie i\n"
"1:\n"
:
: "r" (flags)
: "memory");
#endif
}
/* Get/set IPSR */
static inline uint32_t getipsr(void) inline_function;
static inline uint32_t getipsr(void)
{
uint32_t ipsr;
__asm__ __volatile__
(
"\tmrs %0, ipsr\n"
: "=r" (ipsr)
:
: "memory");
return ipsr;
}
/* Get/set CONTROL */
static inline uint32_t getcontrol(void) inline_function;
static inline uint32_t getcontrol(void)
{
uint32_t control;
__asm__ __volatile__
(
"\tmrs %0, control\n"
: "=r" (control)
:
: "memory");
return control;
}
static inline void setcontrol(uint32_t control) inline_function;
static inline void setcontrol(uint32_t control)
{
__asm__ __volatile__
(
"\tmsr control, %0\n"
:
: "r" (control)
: "memory");
}
#endif /* __ASSEMBLY__ */
/****************************************************************************
* Public Data
****************************************************************************/
/****************************************************************************
* Public Function Prototypes
****************************************************************************/
#ifndef __ASSEMBLY__
#ifdef __cplusplus
#define EXTERN extern "C"
extern "C"
{
#else
#define EXTERN extern
#endif
#undef EXTERN
#ifdef __cplusplus
}
#endif
#endif
#endif /* __ARCH_ARM_INCLUDE_ARMV8_M_IRQ_H */