incubator-nuttx/libs/libdsp/lib_pmsm_model.c

282 lines
7.8 KiB
C

/****************************************************************************
* libs/libdsp/lib_pmsm_model.c
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership. The
* ASF licenses this file to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance with the
* License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
****************************************************************************/
/* Permanent magnet synchronous motor model (PMSM)
*
* 1) Flux equation:
*
* lambda_q = L_q * i_q
* lambda_d = L_d * i_d + lampda_m
*
* 2) Voltage equation:
*
* a) D-part:
*
* id Rs Ld
* o-->----/\/\/\/\----mmmmmm----+
* ^ |
* . |
* . .-----.
* . | ^ |
* vd . | | |
* . .-----.
* . | ed
* . |
* o-----------------------------+
*
* ed = -we * lamda_q
* ed = -we * (Lq * iq)
*
* vd = (Rs * id) + (d/dt * (Ld * id)) - (Lq * we * iq)
* Ld * (d/dt * id) = vd - (Rs * id) + (we * Lq * iq)
* (d/dt * id) = (vd - (Rs * id) + (we * Lq * iq)) / Ld
*
* b) Q-part:
*
* iq Rs Lq
* o-->----/\/\/\/\----mmmmmm----+
* ^ |
* . |
* . .-----.
* . | ^ |
* vq . | | |
* . .-----.
* . | eq
* . |
* o-----------------------------+
*
* eq = we * lamda_d
* eq = we * (Lq * iq + lamda_m)
*
* vq = (Rs * iq) + (d/dt * (Lq * iq)) + (we * (Ld * id + lambda_m))
* Lq * (d/dt * iq) = vq - (Rs * iq) - (we * (Ld * id + lambda_m))
* (d/dt * iq) = (vq - (Rs * iq) - (we * (Ld * id + lambda_m))) / Lq
*
* 3) Torque equation:
*
* Te = (3/2) * p * (lambda_d * i_q - lambda_q * i_d)
* Te = (3/2) * p * (lambda_m * i_q + (L_d - L_q) * i_q * i_d)
* Te = (3/2) * p * i_q * (lambda_m + (L_d - L_q) * i_d)
*
* 4) Electromechanical power equation:
*
* Pem = wm * Te
* Pem = (3/2) * wm * (lamda_d * i_q - lamda_q * i_d)
*
* 5) The general mechanical equation for the motor:
*
* Te = Tl + Td + B * wm + J * (d/dt) * wm
* we = p * wm = (P/2) * wm
* p = (P/2)
*
* assume no friction:
*
* Te = Tl + J * (d/dt) * wm
* (d/dt) * wm = (Te - Tl) / J
*
* where:
* B - viscous frictions coefficient
* J - interia of the shaft and the load system
* Td - dry friction
* Tl - load torque
* Te - electromagnetic torque
* Pe - electromagnetical power
* we - electrical velociti of the motor
* wm - mechanical velocity of the rotor
* lambda_m - flux linkage
* P - Number of poles
* p - pole pairs
*/
/****************************************************************************
* Included Files
****************************************************************************/
#include <dsp.h>
#include <string.h>
/****************************************************************************
* Public Functions
****************************************************************************/
/****************************************************************************
* Name: pmsm_model_initialize
*
* Description:
* Initialzie FOC model
*
****************************************************************************/
int pmsm_model_initialize(FAR struct pmsm_model_f32_s *model,
FAR struct pmsm_phy_params_f32_s *phy,
float per)
{
DEBUGASSERT(model);
DEBUGASSERT(phy);
DEBUGASSERT(per > 0.0f);
/* Copy motor model parameters */
memcpy(&model->phy, phy, sizeof(struct pmsm_phy_params_f32_s));
/* Initialize controller period */
model->per = per;
return OK;
}
/****************************************************************************
* Name: pmsm_model_elec
*
* Description:
* Update motor model electrical state
*
****************************************************************************/
int pmsm_model_elec(FAR struct pmsm_model_f32_s *model,
FAR ab_frame_f32_t *vab)
{
float tmp1 = 0.0f;
float tmp2 = 0.0f;
float tmp3 = 0.0f;
float tmp4 = 0.0f;
float tmp5 = 0.0f;
float tmp6 = 0.0f;
DEBUGASSERT(model);
DEBUGASSERT(vab);
/* Copy alpha-beta voltage */
model->state.v_ab.a = vab->a;
model->state.v_ab.b = vab->b;
/* Inverse Clarke transform - get abc voltage */
inv_clarke_transform(&model->state.v_ab,
&model->state.v_abc);
/* Park transform - get DQ voltage */
park_transform(&model->state.angle.angle_el,
&model->state.v_ab,
&model->state.v_dq);
/* q current */
tmp1 = model->phy.motor.res * model->state.i_dq.q;
tmp2 = model->phy.ind_d * model->state.i_dq.d;
tmp3 = tmp2 + model->phy.motor.flux_link;
tmp4 = model->state.omega_e * tmp3;
tmp5 = model->state.v_dq.q - tmp1 - tmp4;
tmp6 = model->per * tmp5;
model->iq_int += (tmp6 * model->phy.one_by_indq);
/* d current */
tmp1 = model->phy.motor.res * model->state.i_dq.d;
tmp2 = model->phy.ind_q * model->state.i_dq.q;
tmp3 = tmp2 * model->state.omega_e;
tmp4 = model->state.v_dq.d - tmp1 + tmp3;
tmp5 = model->per * tmp4;
model->id_int += (tmp5 * model->phy.one_by_indd);
/* Store currents */
model->state.i_dq.q = model->iq_int;
model->state.i_dq.d = model->id_int;
/* Inverse Park transform - get alpha-beta current */
inv_park_transform(&model->state.angle.angle_el,
&model->state.i_dq,
&model->state.i_ab);
/* Inverse Clarke transform - get abc current */
inv_clarke_transform(&model->state.i_ab,
&model->state.i_abc);
return OK;
}
/****************************************************************************
* Name: pmsm_model_mech
*
* Description:
* Update motor model mechanical state
*
****************************************************************************/
int pmsm_model_mech(FAR struct pmsm_model_f32_s *model, float load)
{
float angle = 0.0f;
float dir = 0.0f;
float te = 0.0f;
float tmp1 = 0.0f;
float tmp2 = 0.0f;
float tmp3 = 0.0f;
float tmp4 = 0.0f;
float tmp5 = 0.0f;
DEBUGASSERT(model);
/* Get electrical torque developed by the motor */
tmp1 = model->phy.ind_d - model->phy.ind_q;
tmp2 = tmp1 * model->state.i_dq.d;
tmp3 = model->phy.motor.flux_link - tmp2;
tmp4 = 1.5f * model->phy.motor.p;
tmp5 = tmp4 * model->state.i_dq.q;
te = tmp5 * tmp3;
/* Get new mechanical velocity */
tmp1 = te - load;
tmp2 = model->per * tmp1 ;
tmp3 = tmp2 * model->phy.one_by_iner;
model->state.omega_m = (model->state.omega_m + tmp3);
/* Get new electrical velocity */
model->state.omega_e = model->state.omega_m * model->phy.motor.p;
/* Get rotation direction */
dir = (model->state.omega_e > 0 ? DIR_CW : DIR_CCW);
/* Update electrical angle */
tmp1 = model->state.omega_e * model->per;
angle = model->state.angle.angle_el.angle + tmp1;
/* Update with mechanical angel */
motor_angle_e_update(&model->state.angle, angle, dir);
return OK;
}