incubator-nuttx/arch/ceva/include/xm6/irq.h

258 lines
8.0 KiB
C

/****************************************************************************
* arch/ceva/include/xm6/irq.h
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership. The
* ASF licenses this file to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance with the
* License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
****************************************************************************/
/* This file should never be included directed but, rather, only indirectly
* through nuttx/irq.h
*/
#ifndef __ARCH_CEVA_INCLUDE_XM6_IRQ_H
#define __ARCH_CEVA_INCLUDE_XM6_IRQ_H
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#ifndef __ASSEMBLY__
# include <stdint.h>
#endif
/* Included implementation-dependent register save structure layouts */
#include <arch/xm6/reg.h>
/****************************************************************************
* Pre-processor Definitions
****************************************************************************/
/* Configuration ************************************************************/
/* If this is kernel build, how many nested system calls should we support? */
#ifndef CONFIG_SYS_NNEST
# define CONFIG_SYS_NNEST 2
#endif
/* Alternate register names *************************************************/
#define REG_A0 REG_R0
#define REG_A1 REG_R1
#define REG_A2 REG_R2
#define REG_A3 REG_R3
#define REG_A4 REG_R4
#define REG_A5 REG_R5
#define REG_A6 REG_R6
#define REG_FP REG_R8
#define REG_LR REG_RETREG
#define REG_PC REG_RETREGI
#define REG_OM REG_MODC /* Operation Mode */
/* MODA: IRQ enable/disable */
#define REG_MODA_DEFAULT 0x07f0
#define REG_MODA_ENABLE 0x07f0
#define REG_MODA_DISABLE 0x0010
/* MODC: Operation mode */
#define REG_OM_DEFAULT 0x20 /* PI and Supervisor */
/* Note: this is POM field not OM field */
#define REG_OM_KERNEL 0x00 /* Supervisor Mode */
#define REG_OM_USER 0x08 /* User0 Mode */
#define REG_OM_MASK 0x18 /* Mode Mask */
/* First Level Interrupt (vectors 0-15) */
#define IRQ_RESET 0x00 /* Vector 0: Reset(not handler as an IRQ) */
#define IRQ_BOOT 0x01 /* Vector 1: Boot(not handler as an IRQ) */
#define IRQ_TRAP 0x02 /* Vector 2: Software Interrupt */
#define IRQ_TRAPE 0x03 /* Vector 3: Emulation Software Interrupt */
#define IRQ_BI 0x03 /* Vector 3: Breakpoint Interrupt */
#define IRQ_NMI 0x04 /* Vector 4: Non-Maskable Interrupt */
#define IRQ_INT0 0x05 /* Vector 5: Maskable Interrupt 0 */
#define IRQ_INT1 0x06 /* Vector 6: Maskable Interrupt 1 */
#define IRQ_INT2 0x07 /* Vector 7: Maskable Interrupt 2 */
#define IRQ_INT3 0x08 /* Vector 8: Maskable Interrupt 3 */
#define IRQ_INT4 0x09 /* Vector 9: Maskable Interrupt 4 */
#define IRQ_VINT 0x0a /* Vector 10: Vectored Interrupt */
#define IRQ_TRAP0 0x0b /* Vector 11: Software Interrupt 0 */
#define IRQ_TRAP1 0x0c /* Vector 12: Software Interrupt 1 */
#define IRQ_TRAP2 0x0d /* Vector 13: Software Interrupt 2 */
#define IRQ_TRAP3 0x0e /* Vector 14: Software Interrupt 3 */
#define IRQ_PABP 0x03 /* Vector 3: Program Address Breakpoint */
/* Second Level interrupts (vectors >= 16).
* These definitions are chip-specific.
*/
#define IRQ_VINT_FIRST 16 /* Vector number of the first VINT interrupt */
/****************************************************************************
* Public Types
****************************************************************************/
#ifndef __ASSEMBLY__
/* This structure represents the return state from a system call */
#ifdef CONFIG_LIB_SYSCALL
struct xcpt_syscall_s
{
uint32_t saved_pc;
uint32_t saved_om;
};
#endif
/* The following structure is included in the TCB and defines the complete
* state of the thread.
*/
struct xcptcontext
{
#ifndef CONFIG_DISABLE_SIGNALS
/* The following function pointer is non-zero if there
* are pending signals to be processed.
*/
void *sigdeliver; /* Actual type is sig_deliver_t */
/* These are saved copies of the context used during
* signal processing.
*/
uint32_t *saved_regs;
# ifdef CONFIG_BUILD_PROTECTED
/* This is the saved address to use when returning from a user-space
* signal handler.
*/
uint32_t sigreturn;
# endif
#endif
#ifdef CONFIG_LIB_SYSCALL
/* The following array holds the return address and operation mode
* needed to return from each nested system call.
*/
uint8_t nsyscalls;
struct xcpt_syscall_s syscall[CONFIG_SYS_NNEST];
#endif
/* Register save area with XCPTCONTEXT_SIZE, only valid when:
* 1.The task isn't running or
* 2.The task is interrupted
* otherwise task is running, and regs contain the stale value.
*/
uint32_t *regs;
};
#endif
/****************************************************************************
* Inline functions
****************************************************************************/
#ifndef __ASSEMBLY__
/* Name: up_irq_save, up_irq_restore, and friends.
*
* NOTE: This function should never be called from application code and,
* as a general rule unless you really know what you are doing, this
* function should not be called directly from operation system code either:
* Typically, the wrapper functions, enter_critical_section() and
* leave_critical section(), are probably what you really want.
*/
/* Get/set the MODA register, here is the irq related bits:
* Bit [4] Interrupt enable (RW)
* Bit [5] Interrupt mask for INT0 (RW)
* Bit [6] Interrupt mask for INT1 (RW)
* Bit [7] Interrupt mask for INT2 (RW)
* Bit [8] Interrupt mask for INT3 (RW)
* Bit [9] Interrupt mask for INT4 (RW)
* Bit [10] Interrupt mask for VINT (RW)
* Bit [11] Interrupt pending for INT0 (RO)
* Bit [12] Interrupt pending for INT1 (RO)
* Bit [13] Interrupt pending for INT2 (RO)
* Bit [14] Interrupt pending for INT3 (RO)
* Bit [15] Interrupt pending for INT4 (RO)
* Bit [16] Interrupt pending for INTV (RO)
* All writable bits are clear by hardware during reset.
*
* We manipulate the individual mask bits instead of global enable bit since:
* 1.Global IE not only mask INTX request but also mask TRAPX instruction.
* 2.Hardware always enable global IE after the interrupt return.
* Both behavior don't match the nuttx requirement.
*/
static inline uint32_t getmoda(void)
{
uint32_t moda;
__asm__ __volatile__("mov moda.ui, %0.ui\nnop #0x02" : "=r"(moda));
return moda;
}
static inline void setmoda(uint32_t moda)
{
__asm__ __volatile__("nop #0x04\nnop\nmovp %0.ui, moda.ui" : : "r"(moda));
}
/* Return the current value of the stack pointer */
static inline uint32_t up_getsp(void)
{
uint32_t sp;
__asm__ __volatile__("mov sp.ui, %0.ui" : "=r"(sp));
return sp;
}
static inline void up_irq_disable(void)
{
setmoda(REG_MODA_DISABLE);
}
static inline irqstate_t up_irq_save(void)
{
irqstate_t flags = getmoda();
up_irq_disable();
return flags;
}
static inline void up_irq_enable(void)
{
setmoda(REG_MODA_ENABLE);
}
static inline void up_irq_restore(irqstate_t flags)
{
setmoda(flags);
}
#endif /* __ASSEMBLY__ */
#endif /* __ARCH_CEVA_INCLUDE_XM6_IRQ_H */