incubator-nuttx/drivers/mtd/mx25lx.c

1221 lines
40 KiB
C

/****************************************************************************
* drivers/mtd/mx25lx.c
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership. The
* ASF licenses this file to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance with the
* License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <sys/types.h>
#include <stdint.h>
#include <stdbool.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <errno.h>
#include <debug.h>
#include <nuttx/kmalloc.h>
#include <nuttx/signal.h>
#include <nuttx/fs/ioctl.h>
#include <nuttx/spi/spi.h>
#include <nuttx/mtd/mtd.h>
/****************************************************************************
* Pre-processor Definitions
****************************************************************************/
/* Configuration ************************************************************/
/* Per the data sheet, MX25L parts can be driven with either SPI mode 0
* (CPOL=0 and CPHA=0) or mode 3 (CPOL=1 and CPHA=1).
* So you may need to specify:
* CONFIG_MX25L_SPIMODE to select the best mode for your device.
* If CONFIG_MX25L_SPIMODE is not defined, mode 0 will be used.
*/
#ifndef CONFIG_MX25L_SPIMODE
# define CONFIG_MX25L_SPIMODE SPIDEV_MODE0
#endif
/* SPI Frequency. May be up to 133 MHz. */
#ifndef CONFIG_MX25L_SPIFREQUENCY
# define CONFIG_MX25L_SPIFREQUENCY 20000000
#endif
/* Chip Geometries **********************************************************/
/* MX25L1606E capacity is 16Mbit (2048Kbit x 8) = 2Mb (256kb x 8) */
#define MX25L_MX25L1606E_SECTOR_SHIFT 12 /* Sector size 1 << 12 = 4Kb */
#define MX25L_MX25L1606E_NSECTORS 512
#define MX25L_MX25L1606E_PAGE_SHIFT 8 /* Page size 1 << 8 = 256 */
/* MX25L3233F capacity is 32Mbit (4096Kbit x 8) = 4Mb (512kb x 8) */
#define MX25L_MX25L3233F_SECTOR_SHIFT 12 /* Sector size 1 << 12 = 4Kb */
#define MX25L_MX25L3233F_NSECTORS 1024
#define MX25L_MX25L3233F_PAGE_SHIFT 8 /* Page size 1 << 8 = 256 */
/* MX25L6433F capacity is 32Mbit (8192Kbit x 8) = 8Mb (1024kb x 8) */
#define MX25L_MX25L6433F_SECTOR_SHIFT 12 /* Sector size 1 << 12 = 4Kb */
#define MX25L_MX25L6433F_NSECTORS 2048
#define MX25L_MX25L6433F_PAGE_SHIFT 8 /* Page size 1 << 8 = 256 */
/* MX25L25635F capacity is 256Mbit */
#define MX25L_MX25L25635F_SECTOR_SHIFT 12 /* Sector size 1 << 12 = 4Kb */
#define MX25L_MX25L25635F_NSECTORS 8192
#define MX25L_MX25L25635F_PAGE_SHIFT 8 /* Page size 1 << 8 = 256 */
/* Parts larger than 128Mbit require 4-byte addressing */
#define MX25L_ADDRESSBYTES_3 3
#define MX25L_ADDRESSBYTES_4 4
#ifdef CONFIG_MX25L_SECTOR512 /* Simulate a 512 byte sector */
# define MX25L_SECTOR512_SHIFT 9 /* Sector size 1 << 9 = 512 bytes */
#endif
#define MX25L_ERASED_STATE 0xff /* State of FLASH when erased */
#define MX25L_CACHE_VALID (1 << 0) /* 1=Cache has valid data */
#define MX25L_CACHE_DIRTY (1 << 1) /* 1=Cache is dirty */
#define MX25L_CACHE_ERASED (1 << 2) /* 1=Backing FLASH is erased */
#define IS_VALID(p) ((((p)->flags) & MX25L_CACHE_VALID) != 0)
#define IS_DIRTY(p) ((((p)->flags) & MX25L_CACHE_DIRTY) != 0)
#define IS_ERASED(p) ((((p)->flags) & MX25L_CACHE_ERASED) != 0)
#define SET_VALID(p) do { (p)->flags |= MX25L_CACHE_VALID; } while (0)
#define SET_DIRTY(p) do { (p)->flags |= MX25L_CACHE_DIRTY; } while (0)
#define SET_ERASED(p) do { (p)->flags |= MX25L_CACHE_ERASED; } while (0)
#define CLR_VALID(p) do { (p)->flags &= ~MX25L_CACHE_VALID; } while (0)
#define CLR_DIRTY(p) do { (p)->flags &= ~MX25L_CACHE_DIRTY; } while (0)
#define CLR_ERASED(p) do { (p)->flags &= ~MX25L_CACHE_ERASED; } while (0)
/* MX25L Instructions *******************************************************/
/* Command Value Description Addr Data */
/* Dummy */
#define MX25L_READ 0x03 /* Read data bytes 3/4 0 >=1 */
#define MX25L_FAST_READ 0x0b /* Higher speed read 3/4 1 >=1 */
#define MX25L_2READ 0xbb /* 2 x I/O read command */
#define MX25L_DREAD 0x3b /* 1I / 2O read command 3/4 1 >=1 */
#define MX25L_4READ 0xeb /* 4 x I/O read command */
#define MX25L_QREAD 0x6b /* 1I / 4O read command 3/4 1 >=1 */
#define MX25L_WREN 0x06 /* Write Enable 0 0 0 */
#define MX25L_WRDI 0x04 /* Write Disable 0 0 0 */
#define MX25L_RDSR 0x05 /* Read status register 0 0 >=1 */
#define MX25L_RDCR 0x15 /* Read config register 0 0 >=1 */
#define MX25L_WRSR 0x01 /* Write stat/conf register 0 0 2 */
#define MX25L_4PP 0x38 /* Quad page program 3/4 0 1-256 */
#define MX25L_SE 0x20 /* 4Kb Sector erase 3/4 0 0 */
#define MX25L_BE32 0x52 /* 32Kbit block Erase 3/4 0 0 */
#define MX25L_BE64 0xd8 /* 64Kbit block Erase 3/4 0 0 */
#define MX25L_CE 0xc7 /* Chip erase 0 0 0 */
#define MX25L_CE_ALT 0x60 /* Chip erase (alternate) 0 0 0 */
#define MX25L_PP 0x02 /* Page program 3 0 1-256 */
#define MX25L_DP 0xb9 /* Deep power down 0 0 0 */
#define MX25L_RDP 0xab /* Release deep power down 0 0 0 */
#define MX25L_PGM_SUSPEND 0x75 /* Suspends program 0 0 0 */
#define MX25L_ERS_SUSPEND 0xb0 /* Suspends erase 0 0 0 */
#define MX25L_PGM_RESUME 0x7a /* Resume program 0 0 0 */
#define MX25L_ERS_RESUME 0x30 /* Resume erase 0 0 0 */
#define MX25L_RDID 0x9f /* Read identification 0 0 3 */
#define MX25L_RES 0xab /* Read electronic ID 0 3 1 */
#define MX25L_REMS 0x90 /* Read manufacture and ID 1 2 >=2 */
#define MX25L_ENSO 0xb1 /* Enter secured OTP 0 0 0 */
#define MX25L_EXSO 0xc1 /* Exit secured OTP 0 0 0 */
#define MX25L_RDSCUR 0x2b /* Read security register 0 0 0 */
#define MX25L_WRSCUR 0x2f /* Write security register 0 0 0 */
#define MX25L_RSTEN 0x66 /* Reset Enable 0 0 0 */
#define MX25L_RST 0x99 /* Reset Memory 0 0 0 */
#define MX25L_EN4B 0xb7 /* Enter 4-byte mode 0 0 0 */
#define MX25L_EX4B 0xe9 /* Exit 4-byte mode 0 0 0 */
#define MX25L_READ4B 0x13 /* Read data (4 Byte mode) 4 0 >=1 */
#define MX25L_FAST_READ4B 0x0c /* Higher speed read (4B) 4 1 >=1 */
#define MX25L_2READ4B 0xbc /* 2 x I/O read command (4B) */
#define MX25L_DREAD4B 0x3c /* 1I / 2O read command (4B) 4 1 >=1 */
#define MX25L_4READ4B 0xec /* 4 x I/O read command (4B) */
#define MX25L_QREAD4B 0x6c /* 1I / 4O read command (4B) 4 1 >=1 */
#define MX25L_4PP4B 0x3e /* Quad page program (4B) 4 0 1-256 */
#define MX25L_SE4B 0x21 /* 4Kb Sector erase (4B) 4 0 0 */
#define MX25L_BE32K4B 0x5c /* 32Kbit block Erase (4B) 4 0 0 */
#define MX25L_BE64K4B 0xdc /* 64Kbit block Erase (4B) 4 0 0 */
#define MX25L_PP4B 0x12 /* Page program (4B) 4 0 1-256 */
#define MX25L_RDSFDP 0x5a /* read out until CS# high */
#define MX25L_SBL 0xc0 /* Set Burst Length */
#define MX25L_SBL_ALT 0x77 /* Set Burst Length */
#define MX25L_NOP 0x00 /* No Operation 0 0 0 */
/* MX25L Registers **********************************************************/
/* Read ID (RDID) register values */
#define MX25L_MANUFACTURER 0xc2 /* Macronix manufacturer ID */
#define MX25L3233F_DEVID 0x15 /* MX25L3233F device ID */
/* JEDEC Read ID register values */
#define MX25L_JEDEC_MANUFACTURER 0xc2 /* Macronix manufacturer ID */
#define MX25L_JEDEC_MEMORY_TYPE 0x20 /* MX25Lx memory type */
#define MX25L_JEDEC_MX25L1606E_CAPACITY 0x15 /* MX25L1606E memory capacity */
#define MX25L_JEDEC_MX25L3233F_CAPACITY 0x16 /* MX25L3233F memory capacity */
#define MX25L_JEDEC_MX25L6433F_CAPACITY 0x17 /* MX25L6433F memory capacity */
#define MX25L_JEDEC_MX25L25635F_CAPACITY 0x19 /* MX25L25635F memory capacity */
/* Status register bit definitions */
#define MX25L_SR_WIP (1 << 0) /* Bit 0: Write in progress */
#define MX25L_SR_WEL (1 << 1) /* Bit 1: Write enable latch */
#define MX25L_SR_BP_SHIFT (2) /* Bits 2-5: Block protect bits */
#define MX25L_SR_BP_MASK (15 << MX25L_SR_BP_SHIFT)
#define MX25L_SR_QE (1 << 6) /* Bit 6: Quad enable */
#define MX25L_SR_SRWD (1 << 7) /* Bit 7: Status register write protect */
/* Configuration register bit definitions */
#define MX25L_CR_ODS (1 << 0) /* Bit 0: Output driver strength */
#define MX25L_CR_TB (1 << 3) /* Bit 3: Top/bottom selected */
#define MX25L_CR_DC (1 << 6) /* Bit 6: Dummy cycle */
#define MX25L_DUMMY MX25L_NOP
/* Debug ********************************************************************/
#ifdef CONFIG_MX25L_DEBUG
# define mxlerr(format, ...) _err(format, ##__VA_ARGS__)
# define mxlinfo(format, ...) _info(format, ##__VA_ARGS__)
#else
# define mxlerr(x...)
# define mxlinfo(x...)
#endif
/****************************************************************************
* Private Types
****************************************************************************/
/* This type represents the state of the MTD device. The struct mtd_dev_s
* must appear at the beginning of the definition so that you can freely
* cast between pointers to struct mtd_dev_s and struct mx25l_dev_s.
*/
struct mx25l_dev_s
{
struct mtd_dev_s mtd; /* MTD interface */
FAR struct spi_dev_s *dev; /* Saved SPI interface instance */
uint8_t sectorshift;
uint8_t pageshift;
uint8_t addressbytes; /* Number of address bytes required */
uint16_t nsectors;
#if defined(CONFIG_MX25L_SECTOR512)
uint8_t flags; /* Buffered sector flags */
uint16_t esectno; /* Erase sector number in the cache */
FAR uint8_t *sector; /* Allocated sector data */
#endif
};
/****************************************************************************
* Private Function Prototypes
****************************************************************************/
/* Helpers */
static void mx25l_lock(FAR struct spi_dev_s *dev);
static inline void mx25l_unlock(FAR struct spi_dev_s *dev);
static inline int mx25l_readid(FAR struct mx25l_dev_s *priv);
static void mx25l_waitwritecomplete(FAR struct mx25l_dev_s *priv);
static void mx25l_writeenable(FAR struct mx25l_dev_s *priv);
static void mx25l_writedisable(FAR struct mx25l_dev_s *priv);
static inline void mx25l_sectorerase(FAR struct mx25l_dev_s *priv,
off_t offset);
static inline int mx25l_chiperase(FAR struct mx25l_dev_s *priv);
static void mx25l_byteread(FAR struct mx25l_dev_s *priv,
FAR uint8_t *buffer,
off_t address,
size_t nbytes);
static inline void mx25l_pagewrite(FAR struct mx25l_dev_s *priv,
FAR const uint8_t *buffer,
off_t address, size_t nbytes);
#if defined(CONFIG_MX25L_SECTOR512)
static void mx25l_cacheflush(FAR struct mx25l_dev_s *priv);
static FAR uint8_t *mx25l_cacheread(FAR struct mx25l_dev_s *priv,
off_t sector);
static void mx25l_cacheerase(FAR struct mx25l_dev_s *priv,
off_t sector);
static void mx25l_cachewrite(FAR struct mx25l_dev_s *priv,
FAR const uint8_t *buffer,
off_t sector, size_t nsectors);
#endif
/* MTD driver methods */
static int mx25l_erase(FAR struct mtd_dev_s *dev,
off_t startblock,
size_t nblocks);
static ssize_t mx25l_bread(FAR struct mtd_dev_s *dev,
off_t startblock,
size_t nblocks,
FAR uint8_t *buf);
static ssize_t mx25l_bwrite(FAR struct mtd_dev_s *dev,
off_t startblock,
size_t nblocks,
FAR const uint8_t *buf);
static ssize_t mx25l_read(FAR struct mtd_dev_s *dev,
off_t offset,
size_t nbytes,
FAR uint8_t *buffer);
static int mx25l_ioctl(FAR struct mtd_dev_s *dev,
int cmd,
unsigned long arg);
/****************************************************************************
* Private Functions
****************************************************************************/
/****************************************************************************
* Name: mx25l_lock
****************************************************************************/
static void mx25l_lock(FAR struct spi_dev_s *dev)
{
/* On SPI buses where there are multiple devices, it will be necessary to
* lock SPI to have exclusive access to the buses for a sequence of
* transfers. The bus should be locked before the chip is selected.
*
* This is a blocking call and will not return until we have exclusive
* access to the SPI bus.
* We will retain that exclusive access until the bus is unlocked.
*/
SPI_LOCK(dev, true);
/* After locking the SPI bus, the we also need call the setfrequency,
* setbits, and setmode methods to make sure that the SPI is properly
* configured for the device.
* If the SPI bus is being shared, then it may have been left in an
* incompatible state.
*/
SPI_SETMODE(dev, CONFIG_MX25L_SPIMODE);
SPI_SETBITS(dev, 8);
SPI_HWFEATURES(dev, 0);
SPI_SETFREQUENCY(dev, CONFIG_MX25L_SPIFREQUENCY);
}
/****************************************************************************
* Name: mx25l_unlock
****************************************************************************/
static inline void mx25l_unlock(FAR struct spi_dev_s *dev)
{
SPI_LOCK(dev, false);
}
/****************************************************************************
* Name: mx25l_readid
****************************************************************************/
static inline int mx25l_readid(FAR struct mx25l_dev_s *priv)
{
uint16_t manufacturer;
uint16_t memory;
uint16_t capacity;
mxlinfo("priv: %p\n", priv);
/* Lock the SPI bus, configure the bus, and select this FLASH part. */
mx25l_lock(priv->dev);
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);
/* Send the "Read ID (RDID)" command and read the first three ID bytes */
SPI_SEND(priv->dev, MX25L_RDID);
manufacturer = SPI_SEND(priv->dev, MX25L_DUMMY);
memory = SPI_SEND(priv->dev, MX25L_DUMMY);
capacity = SPI_SEND(priv->dev, MX25L_DUMMY);
/* Deselect the FLASH and unlock the bus */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
mx25l_unlock(priv->dev);
mxlinfo("manufacturer: %02x memory: %02x capacity: %02x\n",
manufacturer, memory, capacity);
/* Check for a valid manufacturer and memory type */
if (manufacturer == MX25L_JEDEC_MANUFACTURER &&
memory == MX25L_JEDEC_MEMORY_TYPE)
{
/* Okay.. is it a FLASH capacity that we understand? */
if (capacity == MX25L_JEDEC_MX25L1606E_CAPACITY)
{
/* Save the FLASH geometry */
priv->sectorshift = MX25L_MX25L1606E_SECTOR_SHIFT;
priv->nsectors = MX25L_MX25L1606E_NSECTORS;
priv->pageshift = MX25L_MX25L1606E_PAGE_SHIFT;
priv->addressbytes = MX25L_ADDRESSBYTES_3;
return OK;
}
else if (capacity == MX25L_JEDEC_MX25L3233F_CAPACITY)
{
/* Save the FLASH geometry */
priv->sectorshift = MX25L_MX25L3233F_SECTOR_SHIFT;
priv->nsectors = MX25L_MX25L3233F_NSECTORS;
priv->pageshift = MX25L_MX25L3233F_PAGE_SHIFT;
priv->addressbytes = MX25L_ADDRESSBYTES_3;
return OK;
}
else if (capacity == MX25L_JEDEC_MX25L6433F_CAPACITY)
{
/* Save the FLASH geometry */
priv->sectorshift = MX25L_MX25L6433F_SECTOR_SHIFT;
priv->nsectors = MX25L_MX25L6433F_NSECTORS;
priv->pageshift = MX25L_MX25L6433F_PAGE_SHIFT;
priv->addressbytes = MX25L_ADDRESSBYTES_3;
return OK;
}
else if (capacity == MX25L_JEDEC_MX25L25635F_CAPACITY)
{
/* Save the FLASH geometry */
priv->sectorshift = MX25L_MX25L25635F_SECTOR_SHIFT;
priv->nsectors = MX25L_MX25L25635F_NSECTORS;
priv->pageshift = MX25L_MX25L25635F_PAGE_SHIFT;
priv->addressbytes = MX25L_ADDRESSBYTES_4;
return OK;
}
}
return -ENODEV;
}
/****************************************************************************
* Name: mx25l_waitwritecomplete
****************************************************************************/
static void mx25l_waitwritecomplete(FAR struct mx25l_dev_s *priv)
{
uint8_t status;
/* Loop as long as the memory is busy with a write cycle */
do
{
/* Select this FLASH part */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);
/* Send "Read Status Register (RDSR)" command */
SPI_SEND(priv->dev, MX25L_RDSR);
/* Send a dummy byte to generate the clock needed to shift out
* the status
*/
status = SPI_SEND(priv->dev, MX25L_DUMMY);
/* Deselect the FLASH */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
/* Given that writing could take up to few tens of milliseconds, and
* erasing could take more.
* The following short delay in the "busy" case will allow other
* peripherals to access the SPI bus.
*/
if ((status & MX25L_SR_WIP) != 0)
{
mx25l_unlock(priv->dev);
nxsig_usleep(1000);
mx25l_lock(priv->dev);
}
}
while ((status & MX25L_SR_WIP) != 0);
mxlinfo("Complete\n");
}
/****************************************************************************
* Name: mx25l_writeenable
****************************************************************************/
static void mx25l_writeenable(FAR struct mx25l_dev_s *priv)
{
/* Select this FLASH part */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);
/* Send "Write Enable (WREN)" command */
SPI_SEND(priv->dev, MX25L_WREN);
/* Deselect the FLASH */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
mxlinfo("Enabled\n");
}
/****************************************************************************
* Name: mx25l_writedisable
****************************************************************************/
static void mx25l_writedisable(FAR struct mx25l_dev_s *priv)
{
/* Select this FLASH part */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);
/* Send "Write Disable (WRDI)" command */
SPI_SEND(priv->dev, MX25L_WRDI);
/* Deselect the FLASH */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
mxlinfo("Disabled\n");
}
/****************************************************************************
* Name: mx25l_sectorerase (4k)
****************************************************************************/
static void mx25l_sectorerase(FAR struct mx25l_dev_s *priv, off_t sector)
{
off_t offset;
offset = sector << priv->sectorshift;
mxlinfo("sector: %08lx\n", (long)sector);
/* Send write enable instruction */
mx25l_writeenable(priv);
/* Select this FLASH part */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);
/* Send the "Sector Erase (SE)" or "Block Erase (BE)" instruction
* that was passed in as the erase type.
*/
/* The command we send varies depending on if we need 3 or 4 address
* bytes
*/
if (priv->addressbytes == MX25L_ADDRESSBYTES_4)
{
SPI_SEND(priv->dev, MX25L_SE4B);
/* Send the sector offset high byte first. */
SPI_SEND(priv->dev, (offset >> 24) & 0xff);
SPI_SEND(priv->dev, (offset >> 16) & 0xff);
SPI_SEND(priv->dev, (offset >> 8) & 0xff);
SPI_SEND(priv->dev, offset & 0xff);
}
else
{
SPI_SEND(priv->dev, MX25L_SE);
/* Send the sector offset high byte first. For all of the supported
* parts, the sector number is completely contained in the first byte
* and the values used in the following two bytes don't really matter.
*/
SPI_SEND(priv->dev, (offset >> 16) & 0xff);
SPI_SEND(priv->dev, (offset >> 8) & 0xff);
SPI_SEND(priv->dev, offset & 0xff);
}
/* Deselect the FLASH */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
mx25l_waitwritecomplete(priv);
mxlinfo("Erased\n");
}
/****************************************************************************
* Name: mx25l_chiperase
****************************************************************************/
static inline int mx25l_chiperase(FAR struct mx25l_dev_s *priv)
{
mxlinfo("priv: %p\n", priv);
/* Send write enable instruction */
mx25l_writeenable(priv);
/* Select this FLASH part */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);
/* Send the "Chip Erase (CE)" instruction */
SPI_SEND(priv->dev, MX25L_CE);
/* Deselect the FLASH */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
mx25l_waitwritecomplete(priv);
mxlinfo("Return: OK\n");
return OK;
}
/****************************************************************************
* Name: mx25l_byteread
****************************************************************************/
static void mx25l_byteread(FAR struct mx25l_dev_s *priv, FAR uint8_t *buffer,
off_t address, size_t nbytes)
{
mxlinfo("address: %08lx nbytes: %d\n", (long)address, (int)nbytes);
/* Wait for any preceding write or erase operation to complete. */
mx25l_waitwritecomplete(priv);
/* Make sure that writing is disabled */
mx25l_writedisable(priv);
/* Select this FLASH part */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);
/* The command we send varies depending on if we need 3 or 4 address
* bytes
*/
if (priv->addressbytes == MX25L_ADDRESSBYTES_4)
{
/* Send "Read from Memory - 4 byte mode" instruction */
SPI_SEND(priv->dev, MX25L_FAST_READ4B);
/* Send the address high byte first. */
SPI_SEND(priv->dev, (address >> 24) & 0xff);
SPI_SEND(priv->dev, (address >> 16) & 0xff);
SPI_SEND(priv->dev, (address >> 8) & 0xff);
SPI_SEND(priv->dev, address & 0xff);
}
else
{
/* Send "Read from Memory " instruction */
SPI_SEND(priv->dev, MX25L_FAST_READ);
/* Send the address high byte first. */
SPI_SEND(priv->dev, (address >> 16) & 0xff);
SPI_SEND(priv->dev, (address >> 8) & 0xff);
SPI_SEND(priv->dev, address & 0xff);
}
/* Send a dummy byte */
SPI_SEND(priv->dev, MX25L_DUMMY);
/* Then read all of the requested bytes */
SPI_RECVBLOCK(priv->dev, buffer, nbytes);
/* Deselect the FLASH */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
}
/****************************************************************************
* Name: mx25l_pagewrite
****************************************************************************/
static inline void mx25l_pagewrite(FAR struct mx25l_dev_s *priv,
FAR const uint8_t *buffer,
off_t address, size_t nbytes)
{
mxlinfo("address: %08lx nwords: %d\n", (long)address, (int)nbytes);
for (; nbytes > 0; nbytes -= (1 << priv->pageshift))
{
/* Enable the write access to the FLASH */
mx25l_writeenable(priv);
/* Select this FLASH part */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), true);
if (priv->addressbytes == MX25L_ADDRESSBYTES_4)
{
/* Send the "Page Program - 4 byte mode (MX25L_PP4B)" Command */
SPI_SEND(priv->dev, MX25L_PP4B);
/* Send the address high byte first. */
SPI_SEND(priv->dev, (address >> 24) & 0xff);
SPI_SEND(priv->dev, (address >> 16) & 0xff);
SPI_SEND(priv->dev, (address >> 8) & 0xff);
SPI_SEND(priv->dev, address & 0xff);
}
else
{
/* Send the "Page Program (MX25L_PP)" Command */
SPI_SEND(priv->dev, MX25L_PP);
/* Send the address high byte first. */
SPI_SEND(priv->dev, (address >> 16) & 0xff);
SPI_SEND(priv->dev, (address >> 8) & 0xff);
SPI_SEND(priv->dev, address & 0xff);
}
/* Then send the page of data */
SPI_SNDBLOCK(priv->dev, buffer, 1 << priv->pageshift);
/* Deselect the FLASH and setup for the next pass through the loop */
SPI_SELECT(priv->dev, SPIDEV_FLASH(0), false);
/* Wait for any preceding write or erase operation to complete. */
mx25l_waitwritecomplete(priv);
/* Update addresses */
address += 1 << priv->pageshift;
buffer += 1 << priv->pageshift;
}
mxlinfo("Written\n");
}
/****************************************************************************
* Name: mx25l_cacheflush
****************************************************************************/
#if defined(CONFIG_MX25L_SECTOR512)
static void mx25l_cacheflush(FAR struct mx25l_dev_s *priv)
{
/* If the cached is dirty (meaning that it no longer matches the old
* FLASH contents) or was erased (with the cache containing the correct
* FLASH contents), then write the cached erase block to FLASH.
*/
if (IS_DIRTY(priv) || IS_ERASED(priv))
{
/* Write entire erase block to FLASH */
mx25l_pagewrite(priv, priv->sector,
(off_t)priv->esectno << priv->sectorshift,
(1 << priv->sectorshift));
/* The case is no long dirty and the FLASH is no longer erased */
CLR_DIRTY(priv);
CLR_ERASED(priv);
}
}
#endif
/****************************************************************************
* Name: mx25l_cacheread
****************************************************************************/
#if defined(CONFIG_MX25L_SECTOR512)
static FAR uint8_t *mx25l_cacheread(FAR struct mx25l_dev_s *priv,
off_t sector)
{
off_t esectno;
int shift;
int index;
/* Convert from the 512 byte sector to the erase sector size of the device.
* For exmample, if the actual erase sector size if 4Kb (1 << 12), then we
* first shift to the right by 3 to get the sector number in 4096
* increments.
*/
shift = priv->sectorshift - MX25L_SECTOR512_SHIFT;
esectno = sector >> shift;
mxlinfo("sector: %ld esectno: %d shift=%d\n", sector, esectno, shift);
/* Check if the requested erase block is already in the cache */
if (!IS_VALID(priv) || esectno != priv->esectno)
{
/* No.. Flush any dirty erase block currently in the cache */
mx25l_cacheflush(priv);
/* Read the erase block into the cache */
mx25l_byteread(priv, priv->sector, (esectno << priv->sectorshift),
1 << priv->sectorshift);
/* Mark the sector as cached */
priv->esectno = esectno;
SET_VALID(priv); /* The data in the cache is valid */
CLR_DIRTY(priv); /* It should match the FLASH contents */
CLR_ERASED(priv); /* The underlying FLASH has not been erased */
}
/* Get the index to the 512 sector in the erase block that holds the
* argument
*/
index = sector & ((1 << shift) - 1);
/* Return the address in the cache that holds this sector */
return &priv->sector[index << MX25L_SECTOR512_SHIFT];
}
#endif
/****************************************************************************
* Name: mx25l_cacheerase
****************************************************************************/
#if defined(CONFIG_MX25L_SECTOR512)
static void mx25l_cacheerase(FAR struct mx25l_dev_s *priv, off_t sector)
{
FAR uint8_t *dest;
/* First, make sure that the erase block containing the 512 byte sector is
* in the cache.
*/
dest = mx25l_cacheread(priv, sector);
/* Erase the block containing this sector if it is not already erased.
* The erased indicated will be cleared when the data from the erase sector
* is read into the cache and set here when we erase the block.
*/
if (!IS_ERASED(priv))
{
off_t esectno = sector >> (priv->sectorshift - MX25L_SECTOR512_SHIFT);
mxlinfo("sector: %ld esectno: %d\n", sector, esectno);
mx25l_sectorerase(priv, esectno);
SET_ERASED(priv);
}
/* Put the cached sector data into the erase state and mart the cache as
* dirty (but don't update the FLASH yet. The caller will do that at a more
* optimal time).
*/
memset(dest, MX25L_ERASED_STATE, 1 << MX25L_SECTOR512_SHIFT);
SET_DIRTY(priv);
}
#endif
/****************************************************************************
* Name: mx25l_cachewrite
****************************************************************************/
#if defined(CONFIG_MX25L_SECTOR512)
static void mx25l_cachewrite(FAR struct mx25l_dev_s *priv,
FAR const uint8_t *buffer,
off_t sector, size_t nsectors)
{
FAR uint8_t *dest;
for (; nsectors > 0; nsectors--)
{
/* First, make sure that the erase block containing 512 byte sector is
* in memory.
*/
dest = mx25l_cacheread(priv, sector);
/* Erase the block containing this sector if it is not already erased.
* The erased indicated will be cleared when the data from the erase
* sector is read into the cache and set here when we erase the sector.
*/
if (!IS_ERASED(priv))
{
off_t esectno =
sector >> (priv->sectorshift - MX25L_SECTOR512_SHIFT);
mxlinfo("sector: %ld esectno: %d\n", sector, esectno);
mx25l_sectorerase(priv, esectno);
SET_ERASED(priv);
}
/* Copy the new sector data into cached erase block */
memcpy(dest, buffer, 1 << MX25L_SECTOR512_SHIFT);
SET_DIRTY(priv);
/* Set up for the next 512 byte sector */
buffer += 1 << MX25L_SECTOR512_SHIFT;
sector++;
}
/* Flush the last erase block left in the cache */
mx25l_cacheflush(priv);
}
#endif
/****************************************************************************
* Name: mx25l_erase
****************************************************************************/
static int mx25l_erase(FAR struct mtd_dev_s *dev,
off_t startblock,
size_t nblocks)
{
FAR struct mx25l_dev_s *priv = (FAR struct mx25l_dev_s *)dev;
size_t blocksleft = nblocks;
mxlinfo("startblock: %08lx nblocks: %d\n", (long)startblock, (int)nblocks);
/* Lock access to the SPI bus until we complete the erase */
mx25l_lock(priv->dev);
while (blocksleft-- > 0)
{
/* MX25LVF parts have complex block overlay structure for the moment
* we just erase in 4k blocks.
*/
#ifdef CONFIG_MX25L_SECTOR512
mx25l_cacheerase(priv, startblock);
#else
mx25l_sectorerase(priv, startblock);
#endif
startblock++;
}
#ifdef CONFIG_MX25L_SECTOR512
/* Flush the last erase block left in the cache */
mx25l_cacheflush(priv);
#endif
mx25l_unlock(priv->dev);
return (int)nblocks;
}
/****************************************************************************
* Name: mx25l_bread
****************************************************************************/
static ssize_t mx25l_bread(FAR struct mtd_dev_s *dev, off_t startblock,
size_t nblocks, FAR uint8_t *buffer)
{
FAR struct mx25l_dev_s *priv = (FAR struct mx25l_dev_s *)dev;
ssize_t nbytes;
mxlinfo("startblock: %08lx nblocks: %d\n", (long)startblock, (int)nblocks);
/* On this device, we can handle the block read just like the byte-oriented
* read
*/
#ifdef CONFIG_MX25L_SECTOR512
nbytes = mx25l_read(dev, startblock << MX25L_SECTOR512_SHIFT,
nblocks << MX25L_SECTOR512_SHIFT, buffer);
if (nbytes > 0)
{
return nbytes >> MX25L_SECTOR512_SHIFT;
}
#else
nbytes = mx25l_read(dev,
startblock << priv->pageshift,
nblocks << priv->pageshift,
buffer);
if (nbytes > 0)
{
return nbytes >> priv->pageshift;
}
#endif
return (int)nbytes;
}
/****************************************************************************
* Name: mx25l_bwrite
****************************************************************************/
static ssize_t mx25l_bwrite(FAR struct mtd_dev_s *dev, off_t startblock,
size_t nblocks, FAR const uint8_t *buffer)
{
FAR struct mx25l_dev_s *priv = (FAR struct mx25l_dev_s *)dev;
mxlinfo("startblock: %08lx nblocks: %d\n", (long)startblock, (int)nblocks);
/* Lock the SPI bus and write all of the pages to FLASH */
mx25l_lock(priv->dev);
#if defined(CONFIG_MX25L_SECTOR512)
mx25l_cachewrite(priv, buffer, startblock, nblocks);
#else
mx25l_pagewrite(priv, buffer, startblock << priv->pageshift,
nblocks << priv->pageshift);
#endif
mx25l_unlock(priv->dev);
return nblocks;
}
/****************************************************************************
* Name: mx25l_read
****************************************************************************/
static ssize_t mx25l_read(FAR struct mtd_dev_s *dev,
off_t offset,
size_t nbytes,
FAR uint8_t *buffer)
{
FAR struct mx25l_dev_s *priv = (FAR struct mx25l_dev_s *)dev;
mxlinfo("offset: %08lx nbytes: %d\n", (long)offset, (int)nbytes);
/* Lock the SPI bus and select this FLASH part */
mx25l_lock(priv->dev);
mx25l_byteread(priv, buffer, offset, nbytes);
mx25l_unlock(priv->dev);
mxlinfo("return nbytes: %d\n", (int)nbytes);
return nbytes;
}
/****************************************************************************
* Name: mx25l_ioctl
****************************************************************************/
static int mx25l_ioctl(FAR struct mtd_dev_s *dev, int cmd, unsigned long arg)
{
FAR struct mx25l_dev_s *priv = (FAR struct mx25l_dev_s *)dev;
int ret = -EINVAL; /* Assume good command with bad parameters */
mxlinfo("cmd: %d\n", cmd);
switch (cmd)
{
case MTDIOC_GEOMETRY:
{
FAR struct mtd_geometry_s *geo =
(FAR struct mtd_geometry_s *)((uintptr_t)arg);
if (geo)
{
memset(geo, 0, sizeof(*geo));
/* Populate the geometry structure with information need to
* know the capacity and how to access the device.
*
* NOTE:
* that the device is treated as though it where just an array
* of fixed size blocks. That is most likely not true, but the
* client will expect the device logic to do whatever is
* necessary to make it appear so.
*/
#ifdef CONFIG_MX25L_SECTOR512
geo->blocksize = (1 << MX25L_SECTOR512_SHIFT);
geo->erasesize = (1 << MX25L_SECTOR512_SHIFT);
geo->neraseblocks = priv->nsectors <<
(priv->sectorshift - MX25L_SECTOR512_SHIFT);
#else
geo->blocksize = (1 << priv->pageshift);
geo->erasesize = (1 << priv->sectorshift);
geo->neraseblocks = priv->nsectors;
#endif
ret = OK;
mxlinfo("blocksize: %d erasesize: %d neraseblocks: %d\n",
geo->blocksize, geo->erasesize, geo->neraseblocks);
}
}
break;
case BIOC_PARTINFO:
{
FAR struct partition_info_s *info =
(FAR struct partition_info_s *)arg;
if (info != NULL)
{
#ifdef CONFIG_MX25L_SECTOR512
info->numsectors = priv->nsectors <<
(priv->sectorshift - MX25L_SECTOR512_SHIFT);
info->sectorsize = 1 << MX25L_SECTOR512_SHIFT;
#else
info->numsectors = priv->nsectors <<
(priv->sectorshift - priv->pageshift);
info->sectorsize = 1 << priv->pageshift;
#endif
info->startsector = 0;
info->parent[0] = '\0';
ret = OK;
}
}
break;
case MTDIOC_BULKERASE:
{
/* Erase the entire device */
mx25l_lock(priv->dev);
ret = mx25l_chiperase(priv);
mx25l_unlock(priv->dev);
}
break;
case MTDIOC_ERASESTATE:
{
FAR uint8_t *result = (FAR uint8_t *)arg;
*result = MX25L_ERASED_STATE;
ret = OK;
}
break;
default:
ret = -ENOTTY; /* Bad command */
break;
}
mxlinfo("return %d\n", ret);
return ret;
}
/****************************************************************************
* Public Functions
****************************************************************************/
/****************************************************************************
* Name: mx25l_initialize_spi
*
* Description:
* Create an initialize MTD device instance. MTD devices are not registered
* in the file system, but are created as instances that can be bound to
* other functions (such as a block or character driver front end).
*
****************************************************************************/
FAR struct mtd_dev_s *mx25l_initialize_spi(FAR struct spi_dev_s *dev)
{
FAR struct mx25l_dev_s *priv;
int ret;
mxlinfo("dev: %p\n", dev);
/* Allocate a state structure (we allocate the structure instead of using
* a fixed, static allocation so that we can handle multiple FLASH devices.
* The current implementation would handle only one FLASH part per SPI
* device (only because of the SPIDEV_FLASH(0) definition) and so would
* have to be extended to handle multiple FLASH parts on the same SPI bus.
*/
priv = kmm_zalloc(sizeof(struct mx25l_dev_s));
if (priv)
{
/* Initialize the allocated structure. (unsupported methods were
* nullified by kmm_zalloc).
*/
priv->mtd.erase = mx25l_erase;
priv->mtd.bread = mx25l_bread;
priv->mtd.bwrite = mx25l_bwrite;
priv->mtd.read = mx25l_read;
priv->mtd.ioctl = mx25l_ioctl;
priv->mtd.name = "mx25l";
priv->dev = dev;
/* Deselect the FLASH */
SPI_SELECT(dev, SPIDEV_FLASH(0), false);
/* Identify the FLASH chip and get its capacity */
ret = mx25l_readid(priv);
if (ret != OK)
{
/* Unrecognized! Discard all of that work we just did and
* return NULL
*/
mxlerr("ERROR: Unrecognized\n");
kmm_free(priv);
return NULL;
}
else
{
#ifdef CONFIG_MX25L_SECTOR512 /* Simulate a 512 byte sector */
/* Allocate a buffer for the erase block cache */
priv->sector = kmm_malloc(1 << priv->sectorshift);
if (!priv->sector)
{
/* Allocation failed! Discard all of that work we just did and
* return NULL
*/
ferr("ERROR: Allocation failed\n");
kmm_free(priv);
return NULL;
}
#endif
}
}
/* Return the implementation-specific state structure as the MTD device */
mxlinfo("Return %p\n", priv);
return (FAR struct mtd_dev_s *)priv;
}