This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
README
======
This README discusses issues unique to NuttX configurations for the STMicro
Nucleo-144 board. See ST document STM32 Nucleo-144 boards (UM1974):
https://www.st.com/resource/en/user_manual/dm00244518.pdf
Contents
========
- Nucleo-144 Boards
- Nucleo F722ZE
- Nucleo F746ZG
- Nucleo F767ZI
- Development Environment
- IDEs
- Basic configuration & build steps
- Hardware
- Button
- LED
- U[S]ARTs and Serial Consoles
- SPI
- SDIO - MMC
- SPI Test
- Configurations
f7xx-nsh
f7xx-evalos
Nucleo-144 Boards:
=================
The Nucleo-144 is a standard board for use with several STM32 parts in the
LQFP144 package. Variants include
STM32 Part Board Variant Name
------------- ------------------
STM32F207ZGT6 NUCLEO-F207ZG
STM32F303ZET6 NUCLEO-F303ZE
STM32F429ZIT6 NUCLEO-F429ZI
STM32F446ZET6 NUCLEO-F446ZE
STM32F722ZET6 NUCLEO-F722ZE
STM32F746ZGT6 NUCLEO-F746ZG
STM32F756ZGT6 NUCLEO-F756ZG
STM32F767ZIT6 NUCLEO-F767ZI
STM32L496ZGT6 NUCLEO-L496ZG
STM32L496ZGT6P NUCLEO-L496ZG-P
------------- ------------------
This directory is intended to support all Nucleo-144 variants since the
boards are identical, differing only in the installed part. This common
board design provides uniformity in the documentation from ST and should
allow us to quickly change configurations by just cloning a configuration
and changing the CPU choice and board initialization. Unfortunately for
the developer, the CPU specific information must be extracted from the
common information in the documentation. The exception are the STM32L496ZG
boards, which are supported by configs/nucleo-l496zg
Please read the User Manual UM1727: Getting started with STM32 Nucleo board
software development tools and take note of the Powering options for the
board (6.3 Power supply and power selection) and the Solder bridges based
hardware configuration changes that are configurable (6.11 Solder bridges).
Common Board Features:
---------------------
Peripherals: 8 leds, 2 push button (3 LEDs, 1 button) under software
control
Debug: STLINK/V2-1 debugger/programmer Uses a STM32F103CB to
provide a ST-Link for programming, debug similar to the
OpenOcd FTDI function - USB to JTAG front-end.
Expansion I/F: ST Zio and Extended Ardino and Morpho Headers
Nucleo F746ZG
=============
ST Nucleo F746ZG board from ST Micro is supported. See
http://www.st.com/content/st_com/en/products/evaluation-tools/product-evaluation-tools/mcu-eval-tools/stm32-mcu-eval-tools/stm32-mcu-nucleo/nucleo-f746zg.html
The Nucleo F746ZG order part number is NUCLEO-F746ZG. It is one member of
the STM32 Nucleo-144 board family.
NUCLEO-F746ZG Features:
----------------------
Microprocessor: STM32F746ZGT6 Core: ARM 32-bit Cortex®-M7 CPU with FPU,
L1-cache: 4KB data cache and 4KB instruction cache, up to
216 MHz, MPU, and DSP instructions.
Memory: 1024 KB Flash 320KB of SRAM (including 64KB of data TCM RAM)
+ 16KB of instruction TCM RAM + 4KB of backup SRAM
ADC: 3×12-bit, 2.4 MSPS ADC: up to 24 channels and 7.2 MSPS in
triple interleaved mode
DMA: 2 X 16-stream DMA controllers with FIFOs and burst support
Timers: Up to 18 timers: up to thirteen 16-bit (1x 16-bit lowpower),
two 32-bit timers, 2x watchdogs, SysTick
GPIO: 114 I/O ports with interrupt capability
LCD: LCD-TFT Controllerwith (DMA2D), Parallel interface
I2C: 4 × I2C interfaces (SMBus/PMBus)
U[S]ARTs: 4 USARTs, 4 UARTs (27 Mbit/s, ISO7816 interface, LIN, IrDA,
modem control)
SPI/12Ss: 6/3 (simplex) (up to 50 Mbit/s), 3 with muxed simplex I2S
for audio class accuracy via internal audio PLL or external
clock
QSPI: Dual mode Quad-SPI
SAIs: 2 Serial Audio Interfaces
CAN: 2 X CAN interface
SDMMC interface
SPDIFRX interface
USB: USB 2.0 full-speed device/host/OTG controller with on-chip
PHY
10/100 Ethernet: MAC with dedicated DMA: supports IEEE 1588v2 hardware,
MII/RMII
Camera Interface: 8/14 Bit
CRC calculation unit
TRG: True random number generator
RTC
See https://developer.mbed.org/platforms/ST-Nucleo-F746ZG for additional
information about this board.
Nucleo F767ZI
=============
ST Nucleo F7467ZI board from ST Micro is supported. See
http://www.st.com/content/st_com/en/products/evaluation-tools/product-evaluation-tools/mcu-eval-tools/stm32-mcu-eval-tools/stm32-mcu-nucleo/nucleo-f767zi.html
The Nucleo F767ZI order part number is NUCLEO-F767ZI. It is one member of
the STM32 Nucleo-144 board family.
NUCLEO-F767ZI Features:
----------------------
Microprocessor: STM32F767ZIT6 Core: ARM 32-bit Cortex®-M7 CPU with DPFPU,
L1-cache: 16KB data cache and 16KB instruction cache, up to
216 MHz, MPU, and DSP instructions.
Memory: 2048 KB Flash 512KB of SRAM (including 128KB of data TCM RAM)
+ 16KB of instruction TCM RAM + 4KB of backup SRAM
ADC: 3×12-bit, 2.4 MSPS ADC: up to 24 channels and 7.2 MSPS in
triple interleaved mode
DMA: 2 X 16-stream DMA controllers with FIFOs and burst support
Timers: Up to 18 timers: up to thirteen 16-bit (1x 16-bit lowpower),
two 32-bit timers, 2x watchdogs, SysTick
GPIO: 114 I/O ports with interrupt capability
LCD: LCD-TFT Controllerwith (DMA2D), Parallel interface
I2C: 4 × I2C interfaces (SMBus/PMBus)
U[S]ARTs: 4 USARTs, 4 UARTs (27 Mbit/s, ISO7816 interface, LIN, IrDA,
modem control)
SPI/12Ss: 6/3 (simplex) (up to 50 Mbit/s), 3 with muxed simplex I2S
for audio class accuracy via internal audio PLL or external
clock
QSPI: Dual mode Quad-SPI
SAIs: 2 Serial Audio Interfaces
CAN: 3 X CAN interface
SDMMC interface
SPDIFRX interface
USB: USB 2.0 full/High-speed device/host/OTG controller with on-chip
PHY
10/100 Ethernet: MAC with dedicated DMA: supports IEEE 1588v2 hardware,
MII/RMII
Camera Interface: 8/14 Bit
CRC calculation unit
TRG: True random number generator
RTC subsecond accuracy, hardware calendar
As of this writting the NUCLEO-F767ZI is not available on developer.mbed.org
However, See https://developer.mbed.org/platforms/ST-Nucleo-F746ZG for additional
useful information.
Development Environment
=======================
Either Linux or Cygwin on Windows can be used for the development environment.
The source has been built only using the GNU toolchain (see below). Other
toolchains will likely cause problems.
All testing has been conducted using the GNU toolchain from ARM for Linux.
found here https://developer.arm.com/open-source/gnu-toolchain/gnu-rm/4.9/4.9-2015-q3-update/+download/gcc-arm-none-eabi-4_9-2015q3-20150921-linux.tar.bz2
If you change the default toolchain, then you may also have to modify the
PATH environment variable to include the path to the toolchain binaries.
IDEs
====
NuttX is built using command-line make. It can be used with an IDE, but some
effort will be required to create the project.
Makefile Build
--------------
Under Eclipse, it is pretty easy to set up an "empty makefile project" and
simply use the NuttX makefile to build the system. That is almost for free
under Linux. Under Windows, you will need to set up the "Cygwin GCC" empty
makefile project in order to work with Windows (Google for "Eclipse Cygwin" -
there is a lot of help on the internet).
Basic configuration & build steps
==================================
A GNU GCC-based toolchain is assumed. The PATH environment variable should
be modified to point to the correct path to the Cortex-M7 GCC toolchain (if
different from the default in your PATH variable).
- Configures nuttx creating .config file in the nuttx directory.
$ tools/configure.sh nucleo-f746zg/nsh
- Refreshes the .config file with the latest available configurations.
$ make oldconfig
- Select the features you want in the build.
$ make menuconfig
- Builds Nuttx with the features you selected.
$ make
Hardware
========
GPIO - there are 144 I/O lines on the STM32F7xxZxT6 with various pins pined out
on the Nucleo 144.
See https://developer.mbed.org/platforms/ST-Nucleo-F746ZG/ for slick graphic
pinouts.
Keep in mind that:
1) The I/O is 3.3 Volt not 5 Volt like on the Arduino products.
2) The Nucleo-144 board family has 3 pages of Solder Bridges AKA Solder
Blobs (SB) that can alter the factory configuration. We will note SB
in effect but will assume the factory default settings.
Our main concern is establishing a console and LED utilization for
debugging. Because so many pins can be multiplexed with so many functions,
the above mentioned graphic may be helpful in identifying a serial port.
There are 5 choices that can be made from the menuconfig:
CONFIG_NUCLEO_CONSOLE_ARDUINO or CONFIG_NUCLEO_CONSOLE_MORPHO or
CONFIG_NUCLEO_CONSOLE_MORPHO_UART4 or CONFIG_NUCLEO_CONSOLE_VIRTUAL or
CONFIG_NUCLEO_CONSOLE_NONE
The CONFIG_NUCLEO_CONSOLE_NONE makes no preset for the console. You should still
visit the U[S]ART selection and Device Drivers to disable any U[S]ART remaining.
The CONFIG_NUCLEO_CONSOLE_ARDUINO configurations assume that you are using a
standard Arduino RS-232 shield with the serial interface with RX on pin D0 and
TX on pin D1 from USART6:
-------- ---------------
STM32F7
ARDUIONO FUNCTION GPIO
-- ----- --------- -----
DO RX USART6_RX PG9
D1 TX USART6_TX PG14
-- ----- --------- -----
The CONFIG_NUCLEO_CONSOLE_MORPHO configurations uses Serial Port 8 (USART8)
with TX on PE1 and RX on PE0.
Serial
------
SERIAL_RX PE_0
SERIAL_TX PE_1
The CONFIG_NUCLEO_CONSOLE_MORPHO_UART4 configurations uses Serial Port 4 (UART4)
with TX on PA1 and RX on PA0. Zero Ohm resistor / solder short at
SB13 must be removed/open. (Disables Ethernet MII clocking.)
Serial
------
SERIAL_RX PA_1 CN11 30
SERIAL_TX PA_0 CN11 28
The CONFIG_NUCLEO_CONSOLE_VIRTUAL configurations uses Serial Port 3 (USART3)
with TX on PD8 and RX on PD9.
Serial
------
SERIAL_RX PD9
SERIAL_TX PD8
These signals are internally connected to the on board ST-Link.
Of course if your design has used those pins you can choose a completely
different U[S]ART to use as the console. In that Case, you will need to edit
the include/board.h to select different U[S]ART and / or pin selections.
Buttons
-------
B1 USER: the user button is connected to the I/O PC13 (Tamper support, SB173
ON and SB180 OFF)
LEDs
----
The Board provides a 3 user LEDs, LD1-LD3
LED1 (Green) PB_0 (SB120 ON and SB119 OFF)
LED2 (Blue) PB_7 (SB139 ON)
LED3 (Red) PB_14 (SP118 ON)
- When the I/O is HIGH value, the LEDs are on.
- When the I/O is LOW, the LEDs are off.
These LEDs are not used by the board port unless CONFIG_ARCH_LEDS is
defined. In that case, the usage by the board port is defined in
include/board.h and src/stm32_autoleds.c. The LEDs are used to encode OS
related events as follows when the LEDs are available:
SYMBOL Meaning RED GREEN BLUE
------------------- ----------------------- --- ----- ----
LED_STARTED NuttX has been started OFF OFF OFF
LED_HEAPALLOCATE Heap has been allocated OFF OFF ON
LED_IRQSENABLED Interrupts enabled OFF ON OFF
LED_STACKCREATED Idle stack created OFF ON ON
LED_INIRQ In an interrupt NC NC ON (momentary)
LED_SIGNAL In a signal handler NC ON OFF (momentary)
LED_ASSERTION An assertion failed ON NC ON (momentary)
LED_PANIC The system has crashed ON OFF OFF (flashing 2Hz)
LED_IDLE MCU is is sleep mode ON OFF OFF
OFF - means that the OS is still initializing. Initialization is very fast
so if you see this at all, it probably means that the system is
hanging up somewhere in the initialization phases.
GREEN - This means that the OS completed initialization.
BLUE - Whenever and interrupt or signal handler is entered, the BLUE LED is
illuminated and extinguished when the interrupt or signal handler
exits.
VIOLET - If a recovered assertion occurs, the RED and blue LED will be
illuminated briefly while the assertion is handled. You will
probably never see this.
Flashing RED - In the event of a fatal crash, all other LEDs will be
extinguished and RED LED will FLASH at a 2Hz rate.
Thus if the GREEN LED is lit, NuttX has successfully booted and is,
apparently, running normally. If the RED LED is flashing at
approximately 2Hz, then a fatal error has been detected and the system has
halted.
Serial Consoles
===============
USART6 (CONFIG_NUCLEO_CONSOLE_ARDUINO)
------
STM32F7
ARDUIONO FUNCTION GPIO
-- ----- --------- -----
DO RX USART6_RX PG9
D1 TX USART6_TX PG14
-- ----- --------- -----
You must use a 3.3 TTL to RS-232 converter or a USB to 3.3V TTL
Nucleo 144 FTDI TTL-232R-3V3
------------- -------------------
TXD - D1-TXD - RXD - Pin 5 (Yellow)
RXD - D0-RXD - TXD - Pin 4 (Orange)
GND GND - GND Pin 1 (Black)
------------- -------------------
*Note you will be reverse RX/TX
Use make menuconfig to configure USART6 as the console:
CONFIG_STM32F7_USART6=y
CONFIG_USARTs_SERIALDRIVER=y
CONFIG_USARTS_SERIAL_CONSOLE=y
CONFIG_USART6_RXBUFSIZE=256
CONFIG_USART6_TXBUFSIZE=256
CONFIG_USART6_BAUD=115200
CONFIG_USART6_BITS=8
CONFIG_USART6_PARITY=0
CONFIG_USART6_2STOP=0
USART8 (CONFIG_NUCLEO_CONSOLE_MORPHO)
------
Pins and Connectors:
FUNC GPIO Connector
Pin NAME
---- --- ------- ----
TXD: PE1 CN11-61, PE1
RXD: PE0 CN12-64, PE0
CN10-33, D34
---- --- ------- ----
You must use a 3.3 TTL to RS-232 converter or a USB to 3.3V TTL
Nucleo 144 FTDI TTL-232R-3V3
------------- -------------------
TXD - CN11-61 - RXD - Pin 5 (Yellow)
RXD - CN12-64 - TXD - Pin 4 (Orange)
GND CN12-63 - GND Pin 1 (Black)
------------- -------------------
*Note you will be reverse RX/TX
Use make menuconfig to configure USART8 as the console:
CONFIG_STM32F7_UART8=y
CONFIG_UART8_SERIALDRIVER=y
CONFIG_UART8_SERIAL_CONSOLE=y
CONFIG_UART8_RXBUFSIZE=256
CONFIG_UART8_TXBUFSIZE=256
CONFIG_UART8_BAUD=115200
CONFIG_UART8_BITS=8
CONFIG_UART8_PARITY=0
CONFIG_UART8_2STOP=0
Virtual COM Port (CONFIG_NUCLEO_CONSOLE_VIRTUAL)
----------------
Yet another option is to use USART3 and the USB virtual COM port. This
option may be more convenient for long term development, but is painful
to use during board bring-up.
Solder Bridges. This configuration requires:
PD8 USART3 TX SB5 ON and SB7 OFF (Default)
PD9 USART3 RX SB6 ON and SB4 OFF (Default)
Configuring USART3 is the same as given above but add the S and #3.
Question: What BAUD should be configure to interface with the Virtual
COM port? 115200 8N1?
Default
-------
As shipped, SB4 and SB7 are open and SB5 and SB6 closed, so the
virtual COM port is enabled.
SPI
---
Since this board is so generic, having a quick way to vet the SPI
configuration seams in order. So the board provides a quick test
that can be selected vi CONFIG_NUCLEO_SPI_TEST that will initalise
the selected buses (SPI1-SPI3) and send some text on the bus at
application initalization time board_app_initialize.
SDIO
----
To test the SD performace one can use a SparkFun microSD Sniffer
from https://www.sparkfun.com/products/9419 or similar board
and connect it as follows:
VCC V3.3 CN11 16
GND GND CN11-8
CMD PD2 CN11-4
CLK PC12 CN11-3
DAT0 - PC8 CN12-2
DAT1 - PC9 CN12-1
DAT2 PC10 CN11-1
CD PC11 CN11-2
SPI Test
========
The builtin SPI test facility can be enabled with the following settings:
+CONFIG_STM32F7_SPI=y
+CONFIG_STM32F7_SPI1=y
+CONFIG_STM32F7_SPI2=y
+CONFIG_STM32F7_SPI3=y
+# CONFIG_STM32F7_SPI_INTERRUPTS is not set
+# CONFIG_STM32F7_SPI_DMA is not set
# CONFIG_STM32F7_CUSTOM_CLOCKCONFIG is not set
+CONFIG_NUCLEO_SPI_TEST=y
+CONFIG_NUCLEO_SPI_TEST_MESSAGE="Hello World"
+CONFIG_NUCLEO_SPI1_TEST=y
+CONFIG_NUCLEO_SPI1_TEST_FREQ=1000000
+CONFIG_NUCLEO_SPI1_TEST_BITS=8
+CONFIG_NUCLEO_SPI1_TEST_MODE3=y
+CONFIG_NUCLEO_SPI2_TEST=y
+CONFIG_NUCLEO_SPI2_TEST_FREQ=12000000
+CONFIG_NUCLEO_SPI2_TEST_BITS=8
+CONFIG_NUCLEO_SPI2_TEST_MODE3=y
+CONFIG_NUCLEO_SPI3_TEST=y
+CONFIG_NUCLEO_SPI3_TEST_FREQ=40000000
+CONFIG_NUCLEO_SPI3_TEST_BITS=8
+CONFIG_NUCLEO_SPI3_TEST_MODE3=y
+CONFIG_LIB_BOARDCTL=y
+CONFIG_NSH_ARCHINIT=y
Configurations
==============
f7xx-nsh:
---------
Configures the NuttShell (nsh) located at apps/examples/nsh for the
Nucleo-144 boards. The Configuration enables the serial interfaces
on USART6. Support for builtin applications is enabled, but in the base
configuration no builtin applications are selected (see NOTES below).
NOTES:
1. This configuration uses the mconf-based configuration tool. To
change this configuration using that tool, you should:
a. Build and install the kconfig-mconf tool. See nuttx/README.txt
see additional README.txt files in the NuttX tools repository.
b. If this is the initial configuration then execute
./tools/configure.sh nucleo-144/nsh
in nuttx/ in order to start configuration process.
Caution: Doing this step more than once will overwrite .config with
the contents of the nucleo-144/nsh/defconfig file.
c. Execute 'make oldconfig' in nuttx/ in order to refresh the
configuration.
d. Execute 'make menuconfig' in nuttx/ in order to start the
reconfiguration process.
e. Save the .config file to reuse it in the future starting at step d.
2. By default, this configuration uses the ARM GNU toolchain
for Linux. That can easily be reconfigured, of course.
CONFIG_HOST_LINUX=y : Builds under Linux
CONFIG_ARMV7M_TOOLCHAIN_GNU_EABIL=y : ARM GNU for Linux
3. The serial console may be configured to use either USART3 (which would
correspond to the Virtual COM port) or with the console device
configured for USART6 to support an Arduino serial shield (see
instructions above under "Serial Consoles). You will need to check the
defconfig file to see how the console is set up and, perhaps, modify
the configuration accordingly.
To select the Virtual COM port:
-CONFIG_NUCLEO_CONSOLE_ARDUINO
+CONFIG_NUCLEO_CONSOLE_VIRTUAL=y
-CONFIG_USART6_SERIAL_CONSOLE=y
+CONFIG_USART3_SERIAL_CONSOLE=y
To select the Arduino serial shield:
-CONFIG_NUCLEO_CONSOLE_VIRTUAL=y
+CONFIG_NUCLEO_CONSOLE_ARDUINO
-CONFIG_USART3_SERIAL_CONSOLE=y
+CONFIG_USART6_SERIAL_CONSOLE=y
Default values for other settings associated with the select USART should
be correct.
f7xx-evalos:
------------
This configuration is designed to test the features of the board.
- Configures the NuttShell (nsh) located at apps/examples/nsh for the
Nucleo-144 boards. The console is available on serial interface USART3,
which is accessible over the USB ST-Link interface.
- Configures nsh with advanced features such as autocompletion.
- Configures the on-board LEDs to work with the 'leds' example app.
- Configures the 'helloxx' example app.
NOTES:
1. This configuration uses the mconf-based configuration tool. To
change this configuration using that tool, you should:
a. Build and install the kconfig-mconf tool. See nuttx/README.txt
see additional README.txt files in the NuttX tools repository.
b. If this is the initial configuration then execute
./tools/configure.sh nucleo-144/evalos
in nuttx/ in order to start configuration process.
Caution: Doing this step more than once will overwrite .config with
the contents of the nucleo-144/evalos/defconfig file.
c. Execute 'make oldconfig' in nuttx/ in order to refresh the
configuration.
d. Execute 'make menuconfig' in nuttx/ in order to start the
reconfiguration process.
e. Save the .config file to reuse it in the future starting at step d.
2. By default, this configuration uses the ARM GNU toolchain
for Linux. That can easily be reconfigured, of course.
CONFIG_HOST_LINUX=y : Builds under Linux
CONFIG_ARMV7M_TOOLCHAIN_GNU_EABIL=y : ARM GNU for Linux