incubator-nuttx/drivers/mtd/n25qxxx.c

1608 lines
51 KiB
C

/****************************************************************************
* drivers/mtd/n25qxxx.c
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership. The
* ASF licenses this file to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance with the
* License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <sys/types.h>
#include <inttypes.h>
#include <stdint.h>
#include <stdbool.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <assert.h>
#include <errno.h>
#include <debug.h>
#include <nuttx/kmalloc.h>
#include <nuttx/signal.h>
#include <nuttx/fs/ioctl.h>
#include <nuttx/spi/qspi.h>
#include <nuttx/mtd/mtd.h>
/****************************************************************************
* Pre-processor Definitions
****************************************************************************/
/* Configuration ************************************************************/
/* QuadSPI Mode. Per data sheet, either Mode 0 or Mode 3 may be used. */
#ifndef CONFIG_N25QXXX_QSPIMODE
#define CONFIG_N25QXXX_QSPIMODE QSPIDEV_MODE0
#endif
/* QuadSPI Frequency per data sheet:
*
* In this implementation, only "Quad" reads are performed.
*/
#ifndef CONFIG_N25QXXX_QSPI_FREQUENCY
/* If you haven't specified frequency, default to 40 MHz which will work with
* all commands.
*/
#define CONFIG_N25QXXX_QSPI_FREQUENCY 40000000
#endif
#ifndef CONFIG_N25QXXX_DUMMIES
/* If you haven't specified the number of dummy cycles for quad reads,
* provide a reasonable default.
* The actual number of dummies needed is clock and IO command dependent.
*/
#define CONFIG_N25QXXX_DUMMIES 6
#endif
/* N25QXXX Commands *********************************************************/
/* Configuration, Status, Erase, Program Commands ***************************/
/* Command Value Description: */
/* Data sequence */
#define N25QXXX_READ_STATUS 0x05 /* Read status register: *
* 0x05 | SR */
#define N25QXXX_WRITE_STATUS 0x01 /* Write status register: *
* 0x01 | SR */
#define N25QXXX_READ_VOLCFG 0x85 /* Read volatile configuration register: *
* 0x85 | VCR */
#define N25QXXX_WRITE_VOLCFG 0x81 /* Write svolatile configuration register: *
* 0x81 | VCR */
#define N25QXXX_WRITE_ENABLE 0x06 /* Write enable: *
* 0x06 */
#define N25QXXX_WRITE_DISABLE 0x04 /* Write disable command code: *
* 0x04 */
#define N25QXXX_PAGE_PROGRAM 0x02 /* Page Program:
* 0x02 | ADDR(MS) | ADDR(MID) |
* ADDR(LS) | data */
#define N25QXXX_SUBSECTOR_ERASE 0x20 /* Sub-sector Erase (4 kB) *
* 0x20 | ADDR(MS) | ADDR(MID) | *
* ADDR(LS) */
#define N25QXXX_BULK_ERASE 0xc7 /* Bulk erase: *
* 0xc7 */
/* Read Commands ************************************************************/
/* Command Value Description: */
/* Data sequence */
#define N25QXXX_FAST_READ_QUADIO 0xeb /* Fast Read Quad I/O: *
* 0xeb | ADDR | data... */
/* Reset Commands ***********************************************************/
/* Command Value Description: */
/* Data sequence */
/* ID/Security Commands *****************************************************/
/* Command Value Description: */
/* Data sequence */
#define N25QXXX_JEDEC_ID 0x9f /* JEDEC ID: *
* 0x9f | Manufacturer | MemoryType | *
* Capacity */
/* Flash Manufacturer JEDEC IDs */
#define N25QXXX_JEDEC_ID_SPANSION 0x01
#define N25QXXX_JEDEC_ID_ATMEL 0x1f
#define N25QXXX_JEDEC_ID_ST 0x20
#define N25QXXX_JEDEC_ID_SST 0xbf
#define N25QXXX_JEDEC_ID_MACRONIX 0xc2
#define N25QXXX_JEDEC_ID_WINBOND 0xef
/* N25QXXX JEDIC IDs */
#define N25QXXX3V_JEDEC_DEVICE_TYPE 0xba /* 3v memory device type */
#define N25QXXX2V_JEDEC_DEVICE_TYPE 0xbb /* 2v memory device type */
#define N25Q016_JEDEC_CAPACITY 0x15 /* N25Q016 (2 MB) memory capacity */
#define N25Q032_JEDEC_CAPACITY 0x16 /* N25Q032 (4 MB) memory capacity */
#define N25Q064_JEDEC_CAPACITY 0x17 /* N25Q064 (8 MB) memory capacity */
#define N25Q128_JEDEC_CAPACITY 0x18 /* N25Q128 (16 MB) memory capacity */
#define N25Q256_JEDEC_CAPACITY 0x19 /* N25Q256 (32 MB) memory capacity */
#define N25Q512_JEDEC_CAPACITY 0x20 /* N25Q512 (64 MB) memory capacity */
#define N25Q00_JEDEC_CAPACITY 0x21 /* N25Q00 (128 MB) memory capacity */
/* N25QXXX Registers ********************************************************/
/* Status register bit definitions */
#define STATUS_BUSY_MASK (1 << 0) /* Bit 0: Device ready/busy status */
#define STATUS_READY (0 << 0) /* 0 = Not Busy */
#define STATUS_BUSY (1 << 0) /* 1 = Busy */
#define STATUS_WEL_MASK (1 << 1) /* Bit 1: Write enable latch status */
#define STATUS_WEL_DISABLED (0 << 1) /* 0 = Not Write Enabled */
#define STATUS_WEL_ENABLED (1 << 1) /* 1 = Write Enabled */
#define STATUS_BP_SHIFT (2) /* Bits 2-4: Block protect bits */
#define STATUS_BP_MASK (7 << STATUS_BP_SHIFT)
#define STATUS_BP_NONE (0 << STATUS_BP_SHIFT)
#define STATUS_BP_ALL (7 << STATUS_BP_SHIFT)
#define STATUS_TB_MASK (1 << 5) /* Bit 5: Top / Bottom Protect */
#define STATUS_TB_TOP (0 << 5) /* 0 = BP2-BP0 protect Top down */
#define STATUS_TB_BOTTOM (1 << 5) /* 1 = BP2-BP0 protect Bottom up */
#define STATUS_BP3_MASK (1 << 5) /* Bit 6: BP3 */
#define STATUS_SRP0_MASK (1 << 7) /* Bit 7: Status register protect 0 */
#define STATUS_SRP0_UNLOCKED (0 << 7) /* 0 = WP# no effect / PS Lock Down */
#define STATUS_SRP0_LOCKED (1 << 7) /* 1 = WP# protect / OTP Lock Down */
/* Chip Geometries **********************************************************/
/* All members of the family support uniform 4K-byte 'sub sectors'; they also
* support 64k (and sometimes 32k) 'sectors' proper, but we won't be using
* those here.
*/
/* N25Q016 (2 MB) memory capacity */
#define N25Q016_SECTOR_SIZE (4*1024)
#define N25Q016_SECTOR_SHIFT (12)
#define N25Q016_SECTOR_COUNT (512)
#define N25Q016_PAGE_SIZE (256)
#define N25Q016_PAGE_SHIFT (8)
/* N25Q032 (4 MB) memory capacity */
#define N25Q032_SECTOR_SIZE (4*1024)
#define N25Q032_SECTOR_SHIFT (12)
#define N25Q032_SECTOR_COUNT (1024)
#define N25Q032_PAGE_SIZE (256)
#define N25Q032_PAGE_SHIFT (8)
/* N25Q064 (8 MB) memory capacity */
#define N25Q064_SECTOR_SIZE (4*1024)
#define N25Q064_SECTOR_SHIFT (12)
#define N25Q064_SECTOR_COUNT (2048)
#define N25Q064_PAGE_SIZE (256)
#define N25Q064_PAGE_SHIFT (8)
/* N25Q128 (16 MB) memory capacity */
#define N25Q128_SECTOR_SIZE (4*1024)
#define N25Q128_SECTOR_SHIFT (12)
#define N25Q128_SECTOR_COUNT (4096)
#define N25Q128_PAGE_SIZE (256)
#define N25Q128_PAGE_SHIFT (8)
/* N25Q256 (32 MB) memory capacity */
#define N25Q256_SECTOR_SIZE (4*1024)
#define N25Q256_SECTOR_SHIFT (12)
#define N25Q256_SECTOR_COUNT (8196)
#define N25Q256_PAGE_SIZE (256)
#define N25Q256_PAGE_SHIFT (8)
/* N25Q512 (64 MB) memory capacity */
#define N25Q512_SECTOR_SIZE (4*1024)
#define N25Q512_SECTOR_SHIFT (12)
#define N25Q512_SECTOR_COUNT (16384)
#define N25Q512_PAGE_SIZE (256)
#define N25Q512_PAGE_SHIFT (8)
/* N25Q00 (128 MB) memory capacity */
#define N25Q00_SECTOR_SIZE (4*1024)
#define N25Q00_SECTOR_SHIFT (12)
#define N25Q00_SECTOR_COUNT (32768)
#define N25Q00_PAGE_SIZE (256)
#define N25Q00_PAGE_SHIFT (8)
/* Cache flags **************************************************************/
#define N25QXXX_CACHE_VALID (1 << 0) /* 1=Cache has valid data */
#define N25QXXX_CACHE_DIRTY (1 << 1) /* 1=Cache is dirty */
#define N25QXXX_CACHE_ERASED (1 << 2) /* 1=Backing FLASH is erased */
#define IS_VALID(p) ((((p)->flags) & N25QXXX_CACHE_VALID) != 0)
#define IS_DIRTY(p) ((((p)->flags) & N25QXXX_CACHE_DIRTY) != 0)
#define IS_ERASED(p) ((((p)->flags) & N25QXXX_CACHE_ERASED) != 0)
#define SET_VALID(p) do { (p)->flags |= N25QXXX_CACHE_VALID; } while (0)
#define SET_DIRTY(p) do { (p)->flags |= N25QXXX_CACHE_DIRTY; } while (0)
#define SET_ERASED(p) do { (p)->flags |= N25QXXX_CACHE_ERASED; } while (0)
#define CLR_VALID(p) do { (p)->flags &= ~N25QXXX_CACHE_VALID; } while (0)
#define CLR_DIRTY(p) do { (p)->flags &= ~N25QXXX_CACHE_DIRTY; } while (0)
#define CLR_ERASED(p) do { (p)->flags &= ~N25QXXX_CACHE_ERASED; } while (0)
/* 512 byte sector support **************************************************/
#define N25QXXX_SECTOR512_SHIFT 9
#define N25QXXX_SECTOR512_SIZE (1 << 9)
#define N25QXXX_ERASED_STATE 0xff
/****************************************************************************
* Private Types
****************************************************************************/
/* This type represents the state of the MTD device.
* The struct mtd_dev_s must appear at the beginning of the definition
* so that you can freely cast between pointers to struct mtd_dev_s and
* struct n25qxxx_dev_s.
*/
struct n25qxxx_dev_s
{
struct mtd_dev_s mtd; /* MTD interface */
FAR struct qspi_dev_s *qspi; /* Saved QuadSPI interface instance */
uint16_t nsectors; /* Number of erase sectors */
uint8_t sectorshift; /* Log2 of sector size */
uint8_t pageshift; /* Log2 of page size */
FAR uint8_t *cmdbuf; /* Allocated command buffer */
FAR uint8_t *readbuf; /* Allocated status read buffer */
#ifdef CONFIG_N25QXXX_SECTOR512
uint8_t flags; /* Buffered sector flags */
uint16_t esectno; /* Erase sector number in the cache */
FAR uint8_t *sector; /* Allocated sector data */
#endif
};
/****************************************************************************
* Private Function Prototypes
****************************************************************************/
/* Locking */
static void n25qxxx_lock(FAR struct qspi_dev_s *qspi);
static inline void n25qxxx_unlock(FAR struct qspi_dev_s *qspi);
/* Low-level message helpers */
static int n25qxxx_command(FAR struct qspi_dev_s *qspi, uint8_t cmd);
static int n25qxxx_command_address(FAR struct qspi_dev_s *qspi,
uint8_t cmd,
off_t addr,
uint8_t addrlen);
static int n25qxxx_command_read(FAR struct qspi_dev_s *qspi,
uint8_t cmd,
FAR void *buffer,
size_t buflen);
static int n25qxxx_command_write(FAR struct qspi_dev_s *qspi,
uint8_t cmd,
FAR const void *buffer,
size_t buflen);
static uint8_t n25qxxx_read_status(FAR struct n25qxxx_dev_s *priv);
static void n25qxxx_write_status(FAR struct n25qxxx_dev_s *priv);
static uint8_t n25qxxx_read_volcfg(FAR struct n25qxxx_dev_s *priv);
static void n25qxxx_write_volcfg(FAR struct n25qxxx_dev_s *priv);
static void n25qxxx_write_enable(FAR struct n25qxxx_dev_s *priv);
static void n25qxxx_write_disable(FAR struct n25qxxx_dev_s *priv);
static int n25qxxx_readid(FAR struct n25qxxx_dev_s *priv);
static int n25qxxx_protect(FAR struct n25qxxx_dev_s *priv,
off_t startblock,
size_t nblocks);
static int n25qxxx_unprotect(FAR struct n25qxxx_dev_s *priv,
off_t startblock,
size_t nblocks);
static bool n25qxxx_isprotected(FAR struct n25qxxx_dev_s *priv,
uint8_t status,
off_t address);
static int n25qxxx_erase_sector(FAR struct n25qxxx_dev_s *priv,
off_t offset);
static int n25qxxx_erase_chip(FAR struct n25qxxx_dev_s *priv);
static int n25qxxx_read_byte(FAR struct n25qxxx_dev_s *priv,
FAR uint8_t *buffer,
off_t address,
size_t nbytes);
static int n25qxxx_write_page(FAR struct n25qxxx_dev_s *priv,
FAR const uint8_t *buffer,
off_t address,
size_t nbytes);
#ifdef CONFIG_N25QXXX_SECTOR512
static int n25qxxx_flush_cache(struct n25qxxx_dev_s *priv);
static FAR uint8_t *n25qxxx_read_cache(struct n25qxxx_dev_s *priv,
off_t sector);
static void n25qxxx_erase_cache(struct n25qxxx_dev_s *priv,
off_t sector);
static int n25qxxx_write_cache(FAR struct n25qxxx_dev_s *priv,
FAR const uint8_t *buffer,
off_t sector,
size_t nsectors);
#endif
/* MTD driver methods */
static int n25qxxx_erase(FAR struct mtd_dev_s *dev,
off_t startblock,
size_t nblocks);
static ssize_t n25qxxx_bread(FAR struct mtd_dev_s *dev,
off_t startblock,
size_t nblocks,
FAR uint8_t *buf);
static ssize_t n25qxxx_bwrite(FAR struct mtd_dev_s *dev,
off_t startblock,
size_t nblocks,
FAR const uint8_t *buf);
static ssize_t n25qxxx_read(FAR struct mtd_dev_s *dev,
off_t offset,
size_t nbytes,
FAR uint8_t *buffer);
static int n25qxxx_ioctl(FAR struct mtd_dev_s *dev,
int cmd,
unsigned long arg);
/****************************************************************************
* Private Functions
****************************************************************************/
/****************************************************************************
* Name: n25qxxx_lock
****************************************************************************/
static void n25qxxx_lock(FAR struct qspi_dev_s *qspi)
{
/* On QuadSPI buses where there are multiple devices, it will be necessary
* to lock QuadSPI to have exclusive access to the buses for a sequence of
* transfers. The bus should be locked before the chip is selected.
*
* This is a blocking call and will not return until we have exclusive
* access to the QuadSPI bus. We will retain that exclusive access until
* the bus is unlocked.
*/
QSPI_LOCK(qspi, true);
/* After locking the QuadSPI bus, the we also need call the setfrequency,
* setbits, and setmode methods to make sure that the QuadSPI is properly
* configured for the device. If the QuadSPI bus is being shared, then it
* may have been left in an incompatible state.
*/
QSPI_SETMODE(qspi, CONFIG_N25QXXX_QSPIMODE);
QSPI_SETBITS(qspi, 8);
QSPI_SETFREQUENCY(qspi, CONFIG_N25QXXX_QSPI_FREQUENCY);
}
/****************************************************************************
* Name: n25qxxx_unlock
****************************************************************************/
static inline void n25qxxx_unlock(FAR struct qspi_dev_s *qspi)
{
QSPI_LOCK(qspi, false);
}
/****************************************************************************
* Name: n25qxxx_command
****************************************************************************/
static int n25qxxx_command(FAR struct qspi_dev_s *qspi, uint8_t cmd)
{
struct qspi_cmdinfo_s cmdinfo;
finfo("CMD: %02x\n", cmd);
cmdinfo.flags = 0;
cmdinfo.addrlen = 0;
cmdinfo.cmd = cmd;
cmdinfo.buflen = 0;
cmdinfo.addr = 0;
cmdinfo.buffer = NULL;
return QSPI_COMMAND(qspi, &cmdinfo);
}
/****************************************************************************
* Name: n25qxxx_command_address
****************************************************************************/
static int n25qxxx_command_address(FAR struct qspi_dev_s *qspi, uint8_t cmd,
off_t addr, uint8_t addrlen)
{
struct qspi_cmdinfo_s cmdinfo;
finfo("CMD: %02x Address: %04lx addrlen=%d\n",
cmd,
(unsigned long)addr,
addrlen);
cmdinfo.flags = QSPICMD_ADDRESS;
cmdinfo.addrlen = addrlen;
cmdinfo.cmd = cmd;
cmdinfo.buflen = 0;
cmdinfo.addr = addr;
cmdinfo.buffer = NULL;
return QSPI_COMMAND(qspi, &cmdinfo);
}
/****************************************************************************
* Name: n25qxxx_command_read
****************************************************************************/
static int n25qxxx_command_read(FAR struct qspi_dev_s *qspi, uint8_t cmd,
FAR void *buffer, size_t buflen)
{
struct qspi_cmdinfo_s cmdinfo;
finfo("CMD: %02x buflen: %lu\n", cmd, (unsigned long)buflen);
cmdinfo.flags = QSPICMD_READDATA;
cmdinfo.addrlen = 0;
cmdinfo.cmd = cmd;
cmdinfo.buflen = buflen;
cmdinfo.addr = 0;
cmdinfo.buffer = buffer;
return QSPI_COMMAND(qspi, &cmdinfo);
}
/****************************************************************************
* Name: n25qxxx_command_write
****************************************************************************/
static int n25qxxx_command_write(FAR struct qspi_dev_s *qspi, uint8_t cmd,
FAR const void *buffer, size_t buflen)
{
struct qspi_cmdinfo_s cmdinfo;
finfo("CMD: %02x buflen: %lu\n", cmd, (unsigned long)buflen);
cmdinfo.flags = QSPICMD_WRITEDATA;
cmdinfo.addrlen = 0;
cmdinfo.cmd = cmd;
cmdinfo.buflen = buflen;
cmdinfo.addr = 0;
cmdinfo.buffer = (FAR void *)buffer;
return QSPI_COMMAND(qspi, &cmdinfo);
}
/****************************************************************************
* Name: n25qxxx_read_status
****************************************************************************/
static uint8_t n25qxxx_read_status(FAR struct n25qxxx_dev_s *priv)
{
DEBUGVERIFY(n25qxxx_command_read(priv->qspi, N25QXXX_READ_STATUS,
(FAR void *)&priv->readbuf[0], 1));
return priv->readbuf[0];
}
/****************************************************************************
* Name: n25qxxx_write_status
****************************************************************************/
static void n25qxxx_write_status(FAR struct n25qxxx_dev_s *priv)
{
n25qxxx_write_enable(priv);
/* take care to mask of the SRP bit; it is one-time-programmable */
priv->cmdbuf[0] &= ~STATUS_SRP0_MASK;
n25qxxx_command_write(priv->qspi, N25QXXX_WRITE_STATUS,
(FAR const void *)priv->cmdbuf, 1);
n25qxxx_write_disable(priv);
}
/****************************************************************************
* Name: n25qxxx_read_volcfg
****************************************************************************/
static uint8_t n25qxxx_read_volcfg(FAR struct n25qxxx_dev_s *priv)
{
DEBUGVERIFY(n25qxxx_command_read(priv->qspi, N25QXXX_READ_VOLCFG,
(FAR void *)&priv->readbuf[0], 1));
return priv->readbuf[0];
}
/****************************************************************************
* Name: n25qxxx_write_volcfg
****************************************************************************/
static void n25qxxx_write_volcfg(FAR struct n25qxxx_dev_s *priv)
{
n25qxxx_write_enable(priv);
n25qxxx_command_write(priv->qspi, N25QXXX_WRITE_VOLCFG,
(FAR const void *)priv->cmdbuf, 1);
n25qxxx_write_disable(priv);
}
/****************************************************************************
* Name: n25qxxx_write_enable
****************************************************************************/
static void n25qxxx_write_enable(FAR struct n25qxxx_dev_s *priv)
{
uint8_t status;
do
{
n25qxxx_command(priv->qspi, N25QXXX_WRITE_ENABLE);
status = n25qxxx_read_status(priv);
}
while ((status & STATUS_WEL_MASK) != STATUS_WEL_ENABLED);
}
/****************************************************************************
* Name: n25qxxx_write_disable
****************************************************************************/
static void n25qxxx_write_disable(FAR struct n25qxxx_dev_s *priv)
{
uint8_t status;
do
{
n25qxxx_command(priv->qspi, N25QXXX_WRITE_DISABLE);
status = n25qxxx_read_status(priv);
}
while ((status & STATUS_WEL_MASK) != STATUS_WEL_DISABLED);
}
/****************************************************************************
* Name: n25qxxx_readid
****************************************************************************/
static inline int n25qxxx_readid(struct n25qxxx_dev_s *priv)
{
/* Lock the QuadSPI bus and configure the bus. */
n25qxxx_lock(priv->qspi);
/* Read the JEDEC ID */
n25qxxx_command_read(priv->qspi, N25QXXX_JEDEC_ID, priv->cmdbuf, 3);
/* Unlock the bus */
n25qxxx_unlock(priv->qspi);
finfo("Manufacturer: %02x Device Type %02x, Capacity: %02x\n",
priv->cmdbuf[0], priv->cmdbuf[1], priv->cmdbuf[2]);
/* Check for a recognized memory device type */
if (priv->cmdbuf[1] != N25QXXX3V_JEDEC_DEVICE_TYPE &&
priv->cmdbuf[1] != N25QXXX2V_JEDEC_DEVICE_TYPE)
{
ferr("ERROR: Unrecognized device type: 0x%02x\n", priv->cmdbuf[1]);
return -ENODEV;
}
/* Check for a supported capacity */
switch (priv->cmdbuf[2])
{
case N25Q016_JEDEC_CAPACITY:
priv->sectorshift = N25Q016_SECTOR_SHIFT;
priv->pageshift = N25Q016_PAGE_SHIFT;
priv->nsectors = N25Q016_SECTOR_COUNT;
break;
case N25Q032_JEDEC_CAPACITY:
priv->sectorshift = N25Q032_SECTOR_SHIFT;
priv->pageshift = N25Q032_PAGE_SHIFT;
priv->nsectors = N25Q032_SECTOR_COUNT;
break;
case N25Q064_JEDEC_CAPACITY:
priv->sectorshift = N25Q064_SECTOR_SHIFT;
priv->pageshift = N25Q064_PAGE_SHIFT;
priv->nsectors = N25Q064_SECTOR_COUNT;
break;
case N25Q128_JEDEC_CAPACITY:
priv->sectorshift = N25Q128_SECTOR_SHIFT;
priv->pageshift = N25Q128_PAGE_SHIFT;
priv->nsectors = N25Q128_SECTOR_COUNT;
break;
case N25Q256_JEDEC_CAPACITY:
priv->sectorshift = N25Q256_SECTOR_SHIFT;
priv->pageshift = N25Q256_PAGE_SHIFT;
priv->nsectors = N25Q256_SECTOR_COUNT;
break;
case N25Q512_JEDEC_CAPACITY:
priv->sectorshift = N25Q512_SECTOR_SHIFT;
priv->pageshift = N25Q512_PAGE_SHIFT;
priv->nsectors = N25Q512_SECTOR_COUNT;
break;
case N25Q00_JEDEC_CAPACITY:
priv->sectorshift = N25Q00_SECTOR_SHIFT;
priv->pageshift = N25Q00_PAGE_SHIFT;
priv->nsectors = N25Q00_SECTOR_COUNT;
break;
/* Support for this part is not implemented yet */
default:
ferr("ERROR: Unsupported memory capacity: %02x\n", priv->cmdbuf[2]);
return -ENODEV;
}
return OK;
}
/****************************************************************************
* Name: n25qxxx_protect
****************************************************************************/
static int n25qxxx_protect(FAR struct n25qxxx_dev_s *priv,
off_t startblock, size_t nblocks)
{
/* Get the status register value to check the current protection */
priv->cmdbuf[0] = n25qxxx_read_status(priv);
if ((priv->cmdbuf[0] & STATUS_BP_MASK) == STATUS_BP_NONE)
{
/* Protection already disabled */
return 0;
}
/* Check if sector protection registers are locked */
if ((priv->cmdbuf[0] & STATUS_SRP0_MASK) == STATUS_SRP0_LOCKED)
{
/* Yes.. unprotect section protection registers */
priv->cmdbuf[0] &= ~STATUS_SRP0_MASK;
n25qxxx_write_status(priv);
}
/* Set the protection mask to zero.
* REVISIT: This logic should really just set the BP bits as
* necessary to protect the range of sectors.
*/
priv->cmdbuf[0] |= (STATUS_BP3_MASK | STATUS_BP_MASK);
n25qxxx_write_status(priv);
/* Check the new status */
priv->cmdbuf[0] = n25qxxx_read_status(priv);
if ((priv->cmdbuf[0] & (STATUS_BP3_MASK | STATUS_BP_MASK)) !=
(STATUS_BP3_MASK | STATUS_BP_MASK))
{
return -EACCES;
}
return OK;
}
/****************************************************************************
* Name: n25qxxx_unprotect
****************************************************************************/
static int n25qxxx_unprotect(FAR struct n25qxxx_dev_s *priv,
off_t startblock, size_t nblocks)
{
/* Get the status register value to check the current protection */
priv->cmdbuf[0] = n25qxxx_read_status(priv);
if ((priv->cmdbuf[0] & (STATUS_BP3_MASK | STATUS_BP_MASK)) == 0)
{
/* Protection already disabled */
return 0;
}
/* Check if sector protection registers are locked */
if ((priv->cmdbuf[0] & STATUS_SRP0_MASK) == STATUS_SRP0_LOCKED)
{
/* the SRP bit is one time programmable; if it's set, there's nothing
* that you can do to unset it.
*/
return -EACCES;
}
/* Set the protection mask to zero (and not complemented).
* REVISIT: This logic should really just re-write the BP bits as
* necessary to unprotect the range of sectors.
*/
priv->cmdbuf[0] &= ~(STATUS_BP3_MASK | STATUS_BP_MASK);
n25qxxx_write_status(priv);
/* Check the new status */
priv->cmdbuf[0] = n25qxxx_read_status(priv);
if ((priv->cmdbuf[0] &
(STATUS_SRP0_MASK | STATUS_BP3_MASK | STATUS_BP_MASK)) != 0)
{
return -EACCES;
}
return OK;
}
/****************************************************************************
* Name: n25qxxx_isprotected
****************************************************************************/
static bool n25qxxx_isprotected(FAR struct n25qxxx_dev_s *priv,
uint8_t status,
off_t address)
{
off_t protstart;
off_t protend;
off_t protsize;
unsigned int bp;
/* The BP field is spread across non-contiguous bits */
bp = (status & STATUS_BP_MASK) >> STATUS_BP_SHIFT;
if (status & STATUS_BP3_MASK)
{
bp |= 8;
}
/* the BP field is essentially the power-of-two of the number of 64k
* sectors, saturated to the device size.
*/
if (0 == bp)
{
return false;
}
protsize = 0x00010000;
protsize <<= (protsize << (bp - 1));
protend = (1 << priv->sectorshift) * priv->nsectors;
if (protsize > protend)
{
protsize = protend;
}
/* The final protection range then depends on if the protection region is
* configured top-down or bottom up (assuming CMP=0).
*/
if ((status & STATUS_TB_MASK) != 0)
{
protstart = 0x00000000;
protend = protstart + protsize;
}
else
{
protstart = protend - protsize;
/* protend already computed above */
}
return (address >= protstart && address < protend);
}
/****************************************************************************
* Name: n25qxxx_erase_sector
****************************************************************************/
static int n25qxxx_erase_sector(struct n25qxxx_dev_s *priv, off_t sector)
{
off_t address;
uint8_t status;
finfo("sector: %08lx\n", (unsigned long)sector);
/* Check that the flash is ready and unprotected */
status = n25qxxx_read_status(priv);
if ((status & STATUS_BUSY_MASK) != STATUS_READY)
{
ferr("ERROR: Flash busy: %02x", status);
return -EBUSY;
}
/* Get the address associated with the sector */
address = (off_t)sector << priv->sectorshift;
if ((status & (STATUS_BP3_MASK | STATUS_BP_MASK)) != 0 &&
n25qxxx_isprotected(priv, status, address))
{
ferr("ERROR: Flash protected: %02x", status);
return -EACCES;
}
/* Send the sector erase command */
n25qxxx_write_enable(priv);
n25qxxx_command_address(priv->qspi, N25QXXX_SUBSECTOR_ERASE, address, 3);
/* Wait for erasure to finish */
while ((n25qxxx_read_status(priv) & STATUS_BUSY_MASK) != 0);
return OK;
}
/****************************************************************************
* Name: n25qxxx_erase_chip
****************************************************************************/
static int n25qxxx_erase_chip(struct n25qxxx_dev_s *priv)
{
uint8_t status;
/* Check if the FLASH is protected */
status = n25qxxx_read_status(priv);
if ((status & (STATUS_BP3_MASK | STATUS_BP_MASK)) != 0)
{
ferr("ERROR: FLASH is Protected: %02x", status);
return -EACCES;
}
/* Erase the whole chip */
n25qxxx_write_enable(priv);
n25qxxx_command(priv->qspi, N25QXXX_BULK_ERASE);
/* Wait for the erasure to complete */
status = n25qxxx_read_status(priv);
while ((status & STATUS_BUSY_MASK) != 0)
{
nxsig_usleep(200 * 1000);
status = n25qxxx_read_status(priv);
}
return OK;
}
/****************************************************************************
* Name: n25qxxx_read_byte
****************************************************************************/
static int n25qxxx_read_byte(FAR struct n25qxxx_dev_s *priv,
FAR uint8_t *buffer,
off_t address,
size_t buflen)
{
struct qspi_meminfo_s meminfo;
finfo("address: %08lx nbytes: %d\n", (long)address, (int)buflen);
meminfo.flags = QSPIMEM_READ | QSPIMEM_QUADIO;
meminfo.addrlen = 3;
meminfo.dummies = CONFIG_N25QXXX_DUMMIES;
meminfo.buflen = buflen;
meminfo.cmd = N25QXXX_FAST_READ_QUADIO;
meminfo.addr = address;
meminfo.buffer = buffer;
return QSPI_MEMORY(priv->qspi, &meminfo);
}
/****************************************************************************
* Name: n25qxxx_write_page
****************************************************************************/
static int n25qxxx_write_page(struct n25qxxx_dev_s *priv,
FAR const uint8_t *buffer,
off_t address,
size_t buflen)
{
struct qspi_meminfo_s meminfo;
unsigned int pagesize;
unsigned int npages;
int ret;
int i;
finfo("address: %08lx buflen: %u\n",
(unsigned long)address,
(unsigned)buflen);
npages = (buflen >> priv->pageshift);
pagesize = (1 << priv->pageshift);
/* Set up non-varying parts of transfer description */
meminfo.flags = QSPIMEM_WRITE;
meminfo.cmd = N25QXXX_PAGE_PROGRAM;
meminfo.addrlen = 3;
meminfo.buflen = pagesize;
meminfo.dummies = 0;
/* Then write each page */
for (i = 0; i < npages; i++)
{
/* Set up varying parts of the transfer description */
meminfo.addr = address;
meminfo.buffer = (void *)buffer;
/* Write one page */
n25qxxx_write_enable(priv);
ret = QSPI_MEMORY(priv->qspi, &meminfo);
n25qxxx_write_disable(priv);
if (ret < 0)
{
ferr("ERROR: QSPI_MEMORY failed writing address=%06jx\n",
(intmax_t)address);
return ret;
}
/* Update for the next time through the loop */
buffer += pagesize;
address += pagesize;
buflen -= pagesize;
}
/* The transfer should always be an even number of sectors and hence also
* pages. There should be no remainder.
*/
DEBUGASSERT(buflen == 0);
return OK;
}
/****************************************************************************
* Name: n25qxxx_flush_cache
****************************************************************************/
#ifdef CONFIG_N25QXXX_SECTOR512
static int n25qxxx_flush_cache(struct n25qxxx_dev_s *priv)
{
int ret = OK;
/* If the cache is dirty (meaning that it no longer matches the old FLASH
* contents) or was erased (with the cache containing the correct FLASH
* contents), then write the cached erase block to FLASH.
*/
if (IS_DIRTY(priv) || IS_ERASED(priv))
{
off_t address;
/* Convert the erase sector number into a FLASH address */
address = (off_t)priv->esectno << priv->sectorshift;
/* Write entire erase block to FLASH */
ret = n25qxxx_write_page(priv, priv->sector,
address, 1 << priv->sectorshift);
if (ret < 0)
{
ferr("ERROR: n25qxxx_write_page failed: %d\n", ret);
}
/* The cache is no long dirty and the FLASH is no longer erased */
CLR_DIRTY(priv);
CLR_ERASED(priv);
}
return ret;
}
#endif
/****************************************************************************
* Name: n25qxxx_read_cache
****************************************************************************/
#ifdef CONFIG_N25QXXX_SECTOR512
static FAR uint8_t *n25qxxx_read_cache(struct n25qxxx_dev_s *priv,
off_t sector)
{
off_t esectno;
int shift;
int index;
int ret;
/* Convert from the 512 byte sector to the erase sector size of the device.
* For example, if the actual erase sector size is 4Kb (1 << 12), then we
* first shift to the right by 3 to get the sector number in 4096
* increments.
*/
shift = priv->sectorshift - N25QXXX_SECTOR512_SHIFT;
esectno = sector >> shift;
finfo("sector: %jd esectno: %jd shift=%d\n",
(intmax_t)sector, (intmax_t)esectno, shift);
/* Check if the requested erase block is already in the cache */
if (!IS_VALID(priv) || esectno != priv->esectno)
{
/* No.. Flush any dirty erase block currently in the cache */
ret = n25qxxx_flush_cache(priv);
if (ret < 0)
{
ferr("ERROR: n25qxxx_flush_cache failed: %d\n", ret);
return NULL;
}
/* Read the erase block into the cache */
ret = n25qxxx_read_byte(priv, priv->sector,
(esectno << priv->sectorshift),
(1 << priv->sectorshift));
if (ret < 0)
{
ferr("ERROR: n25qxxx_read_byte failed: %d\n", ret);
return NULL;
}
/* Mark the sector as cached */
priv->esectno = esectno;
SET_VALID(priv); /* The data in the cache is valid */
CLR_DIRTY(priv); /* It should match the FLASH contents */
CLR_ERASED(priv); /* The underlying FLASH has not been erased */
}
/* Get the index to the 512 sector in the erase block that holds the
* argument
*/
index = sector & ((1 << shift) - 1);
/* Return the address in the cache that holds this sector */
return &priv->sector[index << N25QXXX_SECTOR512_SHIFT];
}
#endif
/****************************************************************************
* Name: n25qxxx_erase_cache
****************************************************************************/
#ifdef CONFIG_N25QXXX_SECTOR512
static void n25qxxx_erase_cache(struct n25qxxx_dev_s *priv, off_t sector)
{
FAR uint8_t *dest;
/* First, make sure that the erase block containing the 512 byte sector is
* in the cache.
*/
dest = n25qxxx_read_cache(priv, sector);
/* Erase the block containing this sector if it is not already erased.
* The erased indicated will be cleared when the data from the erase sector
* is read into the cache and set here when we erase the block.
*/
if (!IS_ERASED(priv))
{
off_t esectno = sector >>
(priv->sectorshift - N25QXXX_SECTOR512_SHIFT);
finfo("sector: %jd esectno: %jd\n",
(intmax_t)sector, (intmax_t)esectno);
DEBUGVERIFY(n25qxxx_erase_sector(priv, esectno));
SET_ERASED(priv);
}
/* Put the cached sector data into the erase state and mark the cache as
* dirty (but don't update the FLASH yet. The caller will do that at a
* more optimal time).
*/
memset(dest, N25QXXX_ERASED_STATE, N25QXXX_SECTOR512_SIZE);
SET_DIRTY(priv);
}
#endif
/****************************************************************************
* Name: n25qxxx_write_cache
****************************************************************************/
#ifdef CONFIG_N25QXXX_SECTOR512
static int n25qxxx_write_cache(FAR struct n25qxxx_dev_s *priv,
FAR const uint8_t *buffer, off_t sector,
size_t nsectors)
{
FAR uint8_t *dest;
int ret;
for (; nsectors > 0; nsectors--)
{
/* First, make sure that the erase block containing 512 byte sector is
* in memory.
*/
dest = n25qxxx_read_cache(priv, sector);
/* Erase the block containing this sector if it is not already erased.
* The erased indicated will be cleared when the data from the erase
* sector is read into the cache and set here when we erase the sector.
*/
if (!IS_ERASED(priv))
{
off_t esectno = sector >>
(priv->sectorshift - N25QXXX_SECTOR512_SHIFT);
finfo("sector: %jd esectno: %jd\n",
(intmax_t)sector, (intmax_t)esectno);
ret = n25qxxx_erase_sector(priv, esectno);
if (ret < 0)
{
ferr("ERROR: n25qxxx_erase_sector failed: %d\n", ret);
return ret;
}
SET_ERASED(priv);
}
/* Copy the new sector data into cached erase block */
memcpy(dest, buffer, N25QXXX_SECTOR512_SIZE);
SET_DIRTY(priv);
/* Set up for the next 512 byte sector */
buffer += N25QXXX_SECTOR512_SIZE;
sector++;
}
/* Flush the last erase block left in the cache */
return n25qxxx_flush_cache(priv);
}
#endif
/****************************************************************************
* Name: n25qxxx_erase
****************************************************************************/
static int n25qxxx_erase(FAR struct mtd_dev_s *dev,
off_t startblock,
size_t nblocks)
{
FAR struct n25qxxx_dev_s *priv = (FAR struct n25qxxx_dev_s *)dev;
size_t blocksleft = nblocks;
#ifdef CONFIG_N25QXXX_SECTOR512
int ret;
#endif
finfo("startblock: %08lx nblocks: %d\n", (long)startblock, (int)nblocks);
/* Lock access to the SPI bus until we complete the erase */
n25qxxx_lock(priv->qspi);
while (blocksleft-- > 0)
{
/* Erase each sector */
#ifdef CONFIG_N25QXXX_SECTOR512
n25qxxx_erase_cache(priv, startblock);
#else
n25qxxx_erase_sector(priv, startblock);
#endif
startblock++;
}
#ifdef CONFIG_N25QXXX_SECTOR512
/* Flush the last erase block left in the cache */
ret = n25qxxx_flush_cache(priv);
if (ret < 0)
{
nblocks = ret;
}
#endif
n25qxxx_unlock(priv->qspi);
return (int)nblocks;
}
/****************************************************************************
* Name: n25qxxx_bread
****************************************************************************/
static ssize_t n25qxxx_bread(FAR struct mtd_dev_s *dev, off_t startblock,
size_t nblocks, FAR uint8_t *buffer)
{
#ifndef CONFIG_N25QXXX_SECTOR512
FAR struct n25qxxx_dev_s *priv = (FAR struct n25qxxx_dev_s *)dev;
#endif
ssize_t nbytes;
finfo("startblock: %08lx nblocks: %d\n", (long)startblock, (int)nblocks);
/* On this device, we can handle the block read just like the byte-oriented
* read
*/
#ifdef CONFIG_N25QXXX_SECTOR512
nbytes = n25qxxx_read(dev, startblock << N25QXXX_SECTOR512_SHIFT,
nblocks << N25QXXX_SECTOR512_SHIFT, buffer);
if (nbytes > 0)
{
nbytes >>= N25QXXX_SECTOR512_SHIFT;
}
#else
nbytes = n25qxxx_read(dev, startblock << priv->pageshift,
nblocks << priv->pageshift, buffer);
if (nbytes > 0)
{
nbytes >>= priv->pageshift;
}
#endif
return nbytes;
}
/****************************************************************************
* Name: n25qxxx_bwrite
****************************************************************************/
static ssize_t n25qxxx_bwrite(FAR struct mtd_dev_s *dev, off_t startblock,
size_t nblocks, FAR const uint8_t *buffer)
{
FAR struct n25qxxx_dev_s *priv = (FAR struct n25qxxx_dev_s *)dev;
int ret = (int)nblocks;
finfo("startblock: %08lx nblocks: %d\n", (long)startblock, (int)nblocks);
/* Lock the QuadSPI bus and write all of the pages to FLASH */
n25qxxx_lock(priv->qspi);
#if defined(CONFIG_N25QXXX_SECTOR512)
ret = n25qxxx_write_cache(priv, buffer, startblock, nblocks);
if (ret < 0)
{
ferr("ERROR: n25qxxx_write_cache failed: %d\n", ret);
}
#else
ret = n25qxxx_write_page(priv, buffer, startblock << priv->pageshift,
nblocks << priv->pageshift);
if (ret < 0)
{
ferr("ERROR: n25qxxx_write_page failed: %d\n", ret);
}
#endif
n25qxxx_unlock(priv->qspi);
return ret < 0 ? ret : nblocks;
}
/****************************************************************************
* Name: n25qxxx_read
****************************************************************************/
static ssize_t n25qxxx_read(FAR struct mtd_dev_s *dev,
off_t offset,
size_t nbytes,
FAR uint8_t *buffer)
{
FAR struct n25qxxx_dev_s *priv = (FAR struct n25qxxx_dev_s *)dev;
int ret;
finfo("offset: %08lx nbytes: %d\n", (long)offset, (int)nbytes);
/* Lock the QuadSPI bus and select this FLASH part */
n25qxxx_lock(priv->qspi);
ret = n25qxxx_read_byte(priv, buffer, offset, nbytes);
n25qxxx_unlock(priv->qspi);
if (ret < 0)
{
ferr("ERROR: n25qxxx_read_byte returned: %d\n", ret);
return (ssize_t)ret;
}
finfo("return nbytes: %d\n", (int)nbytes);
return (ssize_t)nbytes;
}
/****************************************************************************
* Name: n25qxxx_ioctl
****************************************************************************/
static int n25qxxx_ioctl(FAR struct mtd_dev_s *dev,
int cmd,
unsigned long arg)
{
FAR struct n25qxxx_dev_s *priv = (FAR struct n25qxxx_dev_s *)dev;
int ret = -EINVAL; /* Assume good command with bad parameters */
finfo("cmd: %d\n", cmd);
switch (cmd)
{
case MTDIOC_GEOMETRY:
{
FAR struct mtd_geometry_s *geo =
(FAR struct mtd_geometry_s *)((uintptr_t)arg);
if (geo)
{
memset(geo, 0, sizeof(*geo));
/* Populate the geometry structure with information need to
* know the capacity and how to access the device.
*
* NOTE:
* that the device is treated as though it where just an array
* of fixed size blocks. That is most likely not true, but
* the client will expect the device logic to do whatever is
* necessary to make it appear so.
*/
#ifdef CONFIG_N25QXXX_SECTOR512
geo->blocksize = (1 << N25QXXX_SECTOR512_SHIFT);
geo->erasesize = (1 << N25QXXX_SECTOR512_SHIFT);
geo->neraseblocks = priv->nsectors <<
(priv->sectorshift -
N25QXXX_SECTOR512_SHIFT);
#else
geo->blocksize = (1 << priv->pageshift);
geo->erasesize = (1 << priv->sectorshift);
geo->neraseblocks = priv->nsectors;
#endif
ret = OK;
finfo("blocksize: %" PRId32 " erasesize: %" PRId32
" neraseblocks: %" PRId32 "\n",
geo->blocksize, geo->erasesize, geo->neraseblocks);
}
}
break;
case BIOC_PARTINFO:
{
FAR struct partition_info_s *info =
(FAR struct partition_info_s *)arg;
if (info != NULL)
{
#ifdef CONFIG_N25QXXX_SECTOR512
info->numsectors = priv->nsectors <<
(priv->sectorshift - N25QXXX_SECTOR512_SHIFT);
info->sectorsize = 1 << N25QXXX_SECTOR512_SHIFT;
#else
info->numsectors = priv->nsectors <<
(priv->sectorshift - priv->pageshift);
info->sectorsize = 1 << priv->pageshift;
#endif
info->startsector = 0;
info->parent[0] = '\0';
ret = OK;
}
}
break;
case MTDIOC_BULKERASE:
{
/* Erase the entire device */
n25qxxx_lock(priv->qspi);
ret = n25qxxx_erase_chip(priv);
n25qxxx_unlock(priv->qspi);
}
break;
case MTDIOC_PROTECT:
{
FAR const struct mtd_protect_s *prot =
(FAR const struct mtd_protect_s *)((uintptr_t)arg);
DEBUGASSERT(prot);
ret = n25qxxx_protect(priv, prot->startblock, prot->nblocks);
}
break;
case MTDIOC_UNPROTECT:
{
FAR const struct mtd_protect_s *prot =
(FAR const struct mtd_protect_s *)((uintptr_t)arg);
DEBUGASSERT(prot);
ret = n25qxxx_unprotect(priv, prot->startblock, prot->nblocks);
}
break;
case MTDIOC_ERASESTATE:
{
FAR uint8_t *result = (FAR uint8_t *)arg;
*result = N25QXXX_ERASED_STATE;
ret = OK;
}
break;
default:
ret = -ENOTTY; /* Bad/unsupported command */
break;
}
finfo("return %d\n", ret);
return ret;
}
/****************************************************************************
* Public Functions
****************************************************************************/
/****************************************************************************
* Name: n25qxxx_initialize
*
* Description:
* Create an initialize MTD device instance for the QuadSPI-based n25Qxxx
* FLASH part.
*
* MTD devices are not registered in the file system, but are created as
* instances that can be bound to other functions (such as a block or
* character driver front end).
*
****************************************************************************/
FAR struct mtd_dev_s *n25qxxx_initialize(FAR struct qspi_dev_s *qspi,
bool unprotect)
{
FAR struct n25qxxx_dev_s *priv;
int ret;
finfo("qspi: %p\n", qspi);
DEBUGASSERT(qspi != NULL);
/* Allocate a state structure (we allocate the structure instead of using
* a fixed, static allocation so that we can handle multiple FLASH devices.
* The current implementation would handle only one FLASH part per QuadSPI
* device (only because of the QSPIDEV_FLASH(0) definition) and so would
* have to be extended to handle multiple FLASH parts on the same QuadSPI
* bus.
*/
priv = (FAR struct n25qxxx_dev_s *)
kmm_zalloc(sizeof(struct n25qxxx_dev_s));
if (priv)
{
/* Initialize the allocated structure (unsupported methods were
* nullified by kmm_zalloc).
*/
priv->mtd.erase = n25qxxx_erase;
priv->mtd.bread = n25qxxx_bread;
priv->mtd.bwrite = n25qxxx_bwrite;
priv->mtd.read = n25qxxx_read;
priv->mtd.ioctl = n25qxxx_ioctl;
priv->mtd.name = "n25qxxx";
priv->qspi = qspi;
/* Allocate a 4-byte buffer to support DMA-able command data */
priv->cmdbuf = (FAR uint8_t *)QSPI_ALLOC(qspi, 4);
if (priv->cmdbuf == NULL)
{
ferr("ERROR Failed to allocate command buffer\n");
goto errout_with_priv;
}
/* Allocate a one-byte buffer to support DMA-able status read data */
priv->readbuf = (FAR uint8_t *)QSPI_ALLOC(qspi, 1);
if (priv->readbuf == NULL)
{
ferr("ERROR Failed to allocate read buffer\n");
goto errout_with_cmdbuf;
}
/* Identify the FLASH chip and get its capacity */
ret = n25qxxx_readid(priv);
if (ret != OK)
{
/* Unrecognized! Discard all of that work we just did and
* return NULL
*/
ferr("ERROR Unrecognized QSPI device\n");
goto errout_with_readbuf;
}
/* Specify the number of dummy cycles via the 'volatile
* configuration register'
*/
priv->cmdbuf[0] = n25qxxx_read_volcfg(priv);
priv->cmdbuf[0] &= 0x0f;
priv->cmdbuf[0] |= (CONFIG_N25QXXX_DUMMIES << 4);
n25qxxx_write_volcfg(priv);
/* Unprotect FLASH sectors if so requested. */
if (unprotect)
{
ret = n25qxxx_unprotect(priv, 0, priv->nsectors - 1);
if (ret < 0)
{
ferr("ERROR: Sector unprotect failed\n");
}
}
#ifdef CONFIG_N25QXXX_SECTOR512 /* Simulate a 512 byte sector */
/* Allocate a buffer for the erase block cache */
priv->sector = (FAR uint8_t *)QSPI_ALLOC(qspi, 1 << priv->sectorshift);
if (priv->sector == NULL)
{
/* Allocation failed! Discard all of that work we just did and
* return NULL
*/
ferr("ERROR: Sector allocation failed\n");
goto errout_with_readbuf;
}
#endif
}
/* Return the implementation-specific state structure as the MTD device */
finfo("Return %p\n", priv);
return (FAR struct mtd_dev_s *)priv;
errout_with_readbuf:
QSPI_FREE(qspi, priv->readbuf);
errout_with_cmdbuf:
QSPI_FREE(qspi, priv->cmdbuf);
errout_with_priv:
kmm_free(priv);
return NULL;
}