incubator-nuttx/boards/arm/rp2040/raspberrypi-pico-w/README.txt

207 lines
6.7 KiB
Plaintext

README
======
This directory contains the port of NuttX to the Raspberry Pi Pico.
See https://www.raspberrypi.org/products/raspberry-pi-pico/ for information
about Raspberry Pi Pico W
NuttX supports the following RP2040 capabilities:
- UART (console port)
- GPIO 0 (UART0 TX) and GPIO 1 (UART0 RX) are used for the console.
- I2C
- SPI (master only)
- DMAC
- PWM
- ADC
- Watchdog
- USB device
- MSC, CDC/ACM serial and these composite device are supported.
- CDC/ACM serial device can be used for the console.
- PIO (RP2040 Programmable I/O)
- Flash ROM Boot
- SRAM Boot
- If Pico SDK is available, nuttx.uf2 file which can be used in
BOOTSEL mode will be created.
- Persistent flash filesystem in unused flash ROM
- WiFi wireless communication
NuttX also provide support for these external devices:
- BMP180 sensor at I2C0 (don't forget to define I2C0 GPIOs at "I2C0 GPIO pin assign" in Board Selection menu)
- INA219 sensor / module (don't forget to define I2C0 GPIOs at "I2C0 GPIO pin assign" in Board Selection menu)
- Pico Display Pack (ST7789 LCD)
- RGB leds and buttons are not supported yet.
- Pico Audio Pack (PCM5100A I2S DAC)
- I2S interface is realized by PIO.
- WS2812 smart pixel support
There is currently no direct user mode access to these RP2040 hardware features:
- SPI Slave Mode
- SSI
- RTC
- Timers
Installation
============
1. Download Raspberry Pi Pico SDK
$ git clone -b 1.1.2 https://github.com/raspberrypi/pico-sdk.git
2. Set PICO_SDK_PATH environment variable
$ export PICO_SDK_PATH=<absolute_path_to_pico-sdk_directory>
3. Configure and build NuttX
$ git clone https://github.com/apache/incubator-nuttx.git nuttx
$ git clone https://github.com/apache/incubator-nuttx-apps.git apps
$ cd nuttx
$ make distclean
$ ./tools/configure.sh raspberrypi-pico:nsh
$ make V=1
4. Connect Raspberry Pi Pico board to USB port while pressing BOOTSEL.
The board will be detected as USB Mass Storage Device.
Then copy "nuttx.uf2" into the device.
(Same manner as the standard Pico SDK applications installation.)
5. To access the console, GPIO 0 and 1 pins must be connected to the
device such as USB-serial converter.
`usbnsh` configuration provides the console access by USB CDC/ACM serial
devcice. The console is available by using a terminal software on the USB
host.
Defconfigs
==========
- nsh
Minimum configuration with NuttShell
- nsh-flash
NuttX shell with SMART flash filesystem.
- nshsram
Load NuttX binary to SRAM
- smp
Enable SMP mode. Both Core 0 and Core 1 are used by NuttX.
- telnet
NuttShell configuration (console enabled in UART0, at 115200 bps) with
WiFi client mode and both telnet server and client enabled.
In order to use this configuration you must have RaspberryPi's pico-sdk
on your build system and have the PICO-SDK-PATH environment variable
set with the location of pico-sdk.
After loading this configuration use make menuconfig to change the
country code in Device Drivers->Wireless Device Support->IEEE 802.11
Device Support and the wireless configuration in Application
Configuration->Network Utilities->Network initialization->WAPI
Configuration to match your wireless network.
- ssd1306
SSD1306 OLED display (I2C) test configuration
Connection:
SSD1306 Raspberry Pi Pico
GND ----- GND (Pin 3 or 38 or ...)
VCC ----- 3V3 OUT (Pin 36)
SDA ----- GP4 (I2C0 SDA) (Pin 6)
SCL ----- GP5 (I2C0 SCL) (Pin 7)
- lcd1602
LCD 1602 Segment LCD Disaply (I2C)
Connection:
PCF8574 BackPack Raspberry Pi Pico
GND ----- GND (Pin 3 or 38 or ...)
VCC ----- 5V Vbus (Pin 40)
SDA ----- GP4 (I2C0 SDA) (Pin 6)
SCL ----- GP5 (I2C0 SCL) (Pin 7)
- spisd
SD card support (SPI connection)
Connection:
SD card slot Raspberry Pi Pico
DAT2 (NC)
DAT3/CS ----- GP17 (SPI0 CSn) (Pin 22)
CMD /DI ----- GP19 (SPI0 TX) (Pin 25)
VDD ----- 3V3 OUT (Pin 36)
CLK/SCK ----- GP18 (SPI0 SCK) (Pin 24)
VSS ----- GND (Pin 3 or 38 or ...)
DAT0/DO ----- GP16 (SPI0 RX) (Pin 21)
DAT1 (NC)
* Card hot swapping is not supported.
- st7735
st7735 SPI LCD support
Connection:
st7735 Raspberry Pi Pico
GND ----- GND (Pin 3 or 38 or ...)
VCC ----- 5V Vbus (Pin 40)
SDA ----- GP15 (SPI1 TX) (Pin 20)
SCK ----- GP14 (SPI1 SCK) (Pin 19)
CS ----- GP13 (SPI1 CSn) (Pin 17)
AO(D/C) ----- GP12 (SPI1 RX) (Pin 16)
BL ----- GP11 (Pin 15)
RESET ----- GP10 (Pin 14)
- enc28j60
ENC28J60 SPI ethernet controller support
- IP address is configured by DHCP.
- DNS address is 8.8.8.8 (CONFIG_NETINIT_DNSIPADDR)
- NTP client is enabled.
Connection:
ENC28J60 Raspberry Pi Pico
GND ----- GND (Pin 3 or 38 or ...)
3.3 ----- 3V3 OUT (Pin 36)
SI ----- GP15 (SPI1 TX) (Pin 20)
SCK ----- GP14 (SPI1 SCK) (Pin 19)
CS ----- GP13 (SPI1 CSn) (Pin 17)
SO ----- GP12 (SPI1 RX) (Pin 16)
INT ----- GP11 (Pin 15)
RESET ----- GP10 (Pin 14)
- displaypack
Pico Display Pack support
See the following page for connection:
https://shop.pimoroni.com/products/pico-display-pack
- audiopack
Pico Audio Pack support
See the following page for connection:
https://shop.pimoroni.com/products/pico-audio-pack
SD card interface is also enabled.
- usbnsh
USB CDC/ACM serial console with NuttShell
- usbmsc
USB MSC and CDC/ACM support
`msconn` and `sercon` commands enable the MSC and CDC/ACM devices.
The MSC support provides the interface to the SD card with SPI,
so the SD card slot connection like spisd configuration is required.
- composite
USB composite device (MSC + CDC/ACM) support
`conn` command enables the composite device.
License exceptions
==================
The following files are originated from the files in Pico SDK.
So, the files are licensed under 3-Clause BSD same as Pico SDK.
- arch/arm/src/rp2040/rp2040_clock.c
- arch/arm/src/rp2040/rp2040_pll.c
- arch/arm/src/rp2040/rp2040_xosc.c
- These are created by referring the Pico SDK clock initialization.
- arch/arm/src/rp2040/rp2040_pio.c
- arch/arm/src/rp2040/rp2040_pio.h
- arch/arm/src/rp2040/rp2040_pio_instructions.h
- These provide the similar APIs to Pico SDK's hardware_pio APIs.
- arch/arm/src/rp2040/hardware/*.h
- These are generated from rp2040.svd originally provided in Pico SDK.