incubator-nuttx/drivers/timers/arch_timer.c

463 lines
13 KiB
C

/****************************************************************************
* drivers/timers/arch_timer.c
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership. The
* ASF licenses this file to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance with the
* License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <nuttx/arch.h>
#include <nuttx/clock.h>
#include <nuttx/timers/arch_timer.h>
/****************************************************************************
* Pre-processor Definitions
****************************************************************************/
#if defined(CONFIG_SCHED_TICKLESS) && defined(CONFIG_SCHED_TICKLESS_ALARM)
# error CONFIG_SCHED_TICKLESS_ALARM must be unset to use the arch timer
#endif
#define CONFIG_BOARD_LOOPSPER100USEC ((CONFIG_BOARD_LOOPSPERMSEC+5)/10)
#define CONFIG_BOARD_LOOPSPER10USEC ((CONFIG_BOARD_LOOPSPERMSEC+50)/100)
#define CONFIG_BOARD_LOOPSPERUSEC ((CONFIG_BOARD_LOOPSPERMSEC+500)/1000)
/****************************************************************************
* Private Types
****************************************************************************/
struct arch_timer_s
{
FAR struct timer_lowerhalf_s *lower;
uint32_t *next_interval;
clock_t timebase;
};
/****************************************************************************
* Private Data
****************************************************************************/
static struct arch_timer_s g_timer;
/****************************************************************************
* Private Functions
****************************************************************************/
static inline void timespec_from_usec(FAR struct timespec *ts,
uint64_t microseconds)
{
ts->tv_sec = microseconds / USEC_PER_SEC;
microseconds -= (uint64_t)ts->tv_sec * USEC_PER_SEC;
ts->tv_nsec = microseconds * NSEC_PER_USEC;
}
#ifdef CONFIG_SCHED_TICKLESS
static uint32_t update_timeout(uint32_t timeout)
{
struct timer_status_s status;
/* Don't need critical section here
* since caller already do it for us
*/
TIMER_TICK_GETSTATUS(g_timer.lower, &status);
if (g_timer.next_interval)
{
/* If the timer interrupt is in the process,
* let the callback return the right interval.
*/
*g_timer.next_interval = timeout;
}
else if (timeout != status.timeleft)
{
/* Otherwise, update the timeout directly. */
TIMER_TICK_SETTIMEOUT(g_timer.lower, timeout);
g_timer.timebase += status.timeout - status.timeleft;
}
return status.timeleft;
}
#endif
static uint64_t current_usec(void)
{
struct timer_status_s status;
clock_t timebase;
do
{
timebase = g_timer.timebase;
TIMER_GETSTATUS(g_timer.lower, &status);
}
while (timebase != g_timer.timebase);
return TICK2USEC(timebase) + (status.timeout - status.timeleft);
}
static void udelay_accurate(useconds_t microseconds)
{
uint64_t start = current_usec();
while (current_usec() - start < microseconds)
{
; /* Wait until the timeout reach */
}
}
static void udelay_coarse(useconds_t microseconds)
{
volatile int i;
/* We'll do this a little at a time because we expect that the
* CONFIG_BOARD_LOOPSPERUSEC is very inaccurate during to truncation in
* the divisions of its calculation. We'll use the largest values that
* we can in order to prevent significant error buildup in the loops.
*/
while (microseconds > 1000)
{
for (i = 0; i < CONFIG_BOARD_LOOPSPERMSEC; i++)
{
}
microseconds -= 1000;
}
while (microseconds > 100)
{
for (i = 0; i < CONFIG_BOARD_LOOPSPER100USEC; i++)
{
}
microseconds -= 100;
}
while (microseconds > 10)
{
for (i = 0; i < CONFIG_BOARD_LOOPSPER10USEC; i++)
{
}
microseconds -= 10;
}
while (microseconds > 0)
{
for (i = 0; i < CONFIG_BOARD_LOOPSPERUSEC; i++)
{
}
microseconds--;
}
}
static bool timer_callback(FAR uint32_t *next_interval, FAR void *arg)
{
#ifdef CONFIG_SCHED_TICKLESS
struct timer_status_s status;
uint32_t temp_interval;
g_timer.timebase += *next_interval;
temp_interval = g_oneshot_maxticks;
g_timer.next_interval = &temp_interval;
nxsched_timer_expiration();
g_timer.next_interval = NULL;
TIMER_TICK_GETSTATUS(g_timer.lower, &status);
if (temp_interval != status.timeleft)
{
g_timer.timebase += status.timeout - status.timeleft;
*next_interval = temp_interval;
}
#else
g_timer.timebase++;
nxsched_process_timer();
#endif
return true;
}
/****************************************************************************
* Public Functions
****************************************************************************/
void up_timer_set_lowerhalf(FAR struct timer_lowerhalf_s *lower)
{
g_timer.lower = lower;
#ifdef CONFIG_SCHED_TICKLESS
TIMER_TICK_MAXTIMEOUT(lower, &g_oneshot_maxticks);
TIMER_TICK_SETTIMEOUT(g_timer.lower, g_oneshot_maxticks);
#else
TIMER_TICK_SETTIMEOUT(g_timer.lower, 1);
#endif
TIMER_SETCALLBACK(g_timer.lower, timer_callback, NULL);
TIMER_START(g_timer.lower);
}
/****************************************************************************
* Name: up_timer_gettime
*
* Description:
* Return the elapsed time since power-up (or, more correctly, since
* the architecture-specific timer was initialized). This function is
* functionally equivalent to:
*
* int clock_gettime(clockid_t clockid, FAR struct timespec *ts);
*
* when clockid is CLOCK_MONOTONIC.
*
* This function provides the basis for reporting the current time and
* also is used to eliminate error build-up from small errors in interval
* time calculations.
*
* Provided by platform-specific code and called from the RTOS base code.
*
* Input Parameters:
* ts - Provides the location in which to return the up-time.
*
* Returned Value:
* Zero (OK) is returned on success; a negated errno value is returned on
* any failure.
*
* Assumptions:
* Called from the normal tasking context. The implementation must
* provide whatever mutual exclusion is necessary for correct operation.
* This can include disabling interrupts in order to assure atomic register
* operations.
*
****************************************************************************/
#ifdef CONFIG_CLOCK_TIMEKEEPING
void weak_function up_timer_getmask(FAR clock_t *mask)
{
uint32_t maxticks;
TIMER_TICK_MAXTIMEOUT(g_timer.lower, &maxticks);
*mask = 0;
while (1)
{
clock_t next = (*mask << 1) | 1;
if (next > maxticks)
{
break;
}
*mask = next;
}
}
#endif
#if defined(CONFIG_SCHED_TICKLESS) || defined(CONFIG_CLOCK_TIMEKEEPING)
int weak_function up_timer_gettick(FAR clock_t *ticks)
{
int ret = -EAGAIN;
if (g_timer.lower != NULL)
{
*ticks = current_usec() / USEC_PER_TICK;
ret = OK;
}
return ret;
}
#endif
/****************************************************************************
* Name: up_timer_cancel
*
* Description:
* Cancel the interval timer and return the time remaining on the timer.
* These two steps need to be as nearly atomic as possible.
* nxsched_timer_expiration() will not be called unless the timer is
* restarted with up_timer_start().
*
* If, as a race condition, the timer has already expired when this
* function is called, then that pending interrupt must be cleared so
* that up_timer_start() and the remaining time of zero should be
* returned.
*
* NOTE: This function may execute at a high rate with no timer running (as
* when pre-emption is enabled and disabled).
*
* Provided by platform-specific code and called from the RTOS base code.
*
* Input Parameters:
* ts - Location to return the remaining time. Zero should be returned
* if the timer is not active. ts may be zero in which case the
* time remaining is not returned.
*
* Returned Value:
* Zero (OK) is returned on success. A call to up_timer_cancel() when
* the timer is not active should also return success; a negated errno
* value is returned on any failure.
*
* Assumptions:
* May be called from interrupt level handling or from the normal tasking
* level. Interrupts may need to be disabled internally to assure
* non-reentrancy.
*
****************************************************************************/
#ifdef CONFIG_SCHED_TICKLESS
int weak_function up_timer_tick_cancel(FAR clock_t *ticks)
{
int ret = -EAGAIN;
if (g_timer.lower != NULL)
{
*ticks = update_timeout(g_oneshot_maxticks);
ret = OK;
}
return ret;
}
#endif
/****************************************************************************
* Name: up_timer_start
*
* Description:
* Start the interval timer. nxsched_timer_expiration() will be called at
* the completion of the timeout (unless up_timer_cancel is called to stop
* the timing.
*
* Provided by platform-specific code and called from the RTOS base code.
*
* Input Parameters:
* ts - Provides the time interval until nxsched_timer_expiration() is
* called.
*
* Returned Value:
* Zero (OK) is returned on success; a negated errno value is returned on
* any failure.
*
* Assumptions:
* May be called from interrupt level handling or from the normal tasking
* level. Interrupts may need to be disabled internally to assure
* non-reentrancy.
*
****************************************************************************/
#ifdef CONFIG_SCHED_TICKLESS
int weak_function up_timer_tick_start(clock_t ticks)
{
int ret = -EAGAIN;
if (g_timer.lower != NULL)
{
update_timeout(ticks);
ret = OK;
}
return ret;
}
#endif
/****************************************************************************
* Name: up_perf_*
*
* Description:
* The first interface simply provides the current time value in unknown
* units. NOTE: This function may be called early before the timer has
* been initialized. In that event, the function should just return a
* start time of zero.
*
* Nothing is assumed about the units of this time value. The following
* are assumed, however: (1) The time is an unsigned integer value, (2)
* the time is monotonically increasing, and (3) the elapsed time (also
* in unknown units) can be obtained by subtracting a start time from
* the current time.
*
* The second interface simple converts an elapsed time into well known
* units.
****************************************************************************/
#ifndef CONFIG_ARCH_PERF_EVENTS
void up_perf_init(FAR void *arg)
{
UNUSED(arg);
}
unsigned long up_perf_gettime(void)
{
unsigned long ret = 0;
if (g_timer.lower != NULL)
{
ret = current_usec();
}
return ret;
}
unsigned long up_perf_getfreq(void)
{
return USEC_PER_SEC;
}
void up_perf_convert(unsigned long elapsed,
FAR struct timespec *ts)
{
timespec_from_usec(ts, elapsed);
}
#endif /* CONFIG_ARCH_PERF_EVENTS */
/****************************************************************************
* Name: up_mdelay
*
* Description:
* Delay inline for the requested number of milliseconds.
* *** NOT multi-tasking friendly ***
*
****************************************************************************/
void weak_function up_mdelay(unsigned int milliseconds)
{
up_udelay(USEC_PER_MSEC * milliseconds);
}
/****************************************************************************
* Name: up_udelay
*
* Description:
* Delay inline for the requested number of microseconds.
*
* *** NOT multi-tasking friendly ***
*
****************************************************************************/
void weak_function up_udelay(useconds_t microseconds)
{
if (g_timer.lower != NULL)
{
udelay_accurate(microseconds);
}
else /* Period timer hasn't been initialized yet */
{
udelay_coarse(microseconds);
}
}