incubator-nuttx/drivers/mtd/is25xp.c

1160 lines
36 KiB
C

/****************************************************************************
* drivers/mtd/is25xp.c
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership. The
* ASF licenses this file to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance with the
* License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <sys/types.h>
#include <stdint.h>
#include <stdbool.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <debug.h>
#include <inttypes.h>
#include <nuttx/kmalloc.h>
#include <nuttx/signal.h>
#include <nuttx/fs/ioctl.h>
#include <nuttx/spi/spi.h>
#include <nuttx/mtd/mtd.h>
/****************************************************************************
* Pre-processor Definitions
****************************************************************************/
/* Configuration ************************************************************/
/* Per the data sheet, IS25xP parts can be driven with either SPI mode 0
* (CPOL=0 and CPHA=0) or mode 3 (CPOL=1 and CPHA=1). So you may need to
* specify CONFIG_IS25XP_SPIMODE to select the best mode for your device.
* If CONFIG_IS25XP_SPIMODE is not defined, mode 0 will be used.
*/
#ifndef CONFIG_IS25XP_SPIMODE
#define CONFIG_IS25XP_SPIMODE SPIDEV_MODE0
#endif
/* SPI Frequency. May be up to 50MHz. */
#ifndef CONFIG_IS25XP_SPIFREQUENCY
#define CONFIG_IS25XP_SPIFREQUENCY 20000000
#endif
/* IS25 Registers ***********************************************************/
/* Identification register values */
#define IS25_MANUFACTURER 0x9d
#define IS25_MEMORY_TYPE 0x60
/* IS25LP064 capacity is 8,388,608 bytes:
* (2,048 sectors) * (4,096 bytes per sector)
* (32,768 pages) * (256 bytes per page)
*/
#define IS25_IS25LP064_CAPACITY 0x17
#define IS25_IS25LP064_SECTOR_SHIFT 12 /* Sector size 1 << 12 = 4,096 */
#define IS25_IS25LP064_NSECTORS 2048
#define IS25_IS25LP064_PAGE_SHIFT 8 /* Page size 1 << 8 = 256 */
#define IS25_IS25LP064_NPAGES 32768
#define IS25_IS25LP064_ADDRLEN 3
/* IS25LP128 capacity is 16,777,216 bytes:
* (4,096 sectors) * (4,096 bytes per sector)
* (65,536 pages) * (256 bytes per page)
*/
#define IS25_IS25LP128_CAPACITY 0x18
#define IS25_IS25LP128_SECTOR_SHIFT 12 /* Sector size 1 << 12 = 4,096 */
#define IS25_IS25LP128_NSECTORS 4096
#define IS25_IS25LP128_PAGE_SHIFT 8 /* Page size 1 << 8 = 256 */
#define IS25_IS25LP128_NPAGES 65536
#define IS25_IS25LP128_ADDRLEN 3
/* IS25LP256 capacity is 33,554,432 bytes:
* (8,192 sectors) * (4,096 bytes per sector)
* (131,072 pages) * (256 bytes per page)
*/
#define IS25_IS25LP256_CAPACITY 0x19
#define IS25_IS25LP256_SECTOR_SHIFT 12 /* Sector size 1 << 12 = 4,096 */
#define IS25_IS25LP256_NSECTORS 8192
#define IS25_IS25LP256_PAGE_SHIFT 8 /* Page size 1 << 8 = 256 */
#define IS25_IS25LP256_NPAGES 131072
#define IS25_IS25LP256_ADDRLEN 4 /* This chip requires long addresses */
/* IS25LP512 capacity is 67,108,864 bytes:
* (16,364 sectors) * (4,096 bytes per sector)
* (262,144 pages) * (256 bytes per page)
*/
#define IS25_IS25LP512_CAPACITY 0x1A
#define IS25_IS25LP512_SECTOR_SHIFT 12 /* Sector size 1 << 12 = 4,096 */
#define IS25_IS25LP512_NSECTORS 16384
#define IS25_IS25LP512_PAGE_SHIFT 8 /* Page size 1 << 8 = 256 */
#define IS25_IS25LP512_NPAGES 262144
#define IS25_IS25LP512_ADDRLEN 4 /* This chip requires long addresses */
/* Instructions */
/* Command Value N Description Addr Dummy Data */
#define IS25_WREN 0x06 /* 1 Write Enable 0 0 0 */
#define IS25_WRDI 0x04 /* 1 Write Disable 0 0 0 */
#define IS25_RDID 0x9f /* 1 Read Identification 0 0 1-3 */
#define IS25_RDSR 0x05 /* 1 Read Status Register 0 0 >=1 */
#define IS25_EWSR 0x50 /* 1 Write enable status 0 0 0 */
#define IS25_WRSR 0x01 /* 1 Write Status Register 0 0 1 */
#define IS25_READ 0x03 /* 1 Read Data Bytes 3 0 >=1 */
#define IS25_FAST_READ 0x0b /* 1 Higher speed read 3 1 >=1 */
#define IS25_PP 0x02 /* 1 Page Program 3 0 1-256 */
#define IS25_SE 0x20 /* 1 Sector Erase 3 0 0 */
#define IS25_BE32 0x52 /* 2 32K Block Erase 3 0 0 */
#define IS25_BE64 0xD8 /* 2 64K Block Erase 3 0 0 */
#define IS25_CER 0xC7 /* 1 Chip Erase 0 0 0 */
#define IS25_EN4B 0xB7 /* 1 Enter 4-byte Address Mode 0 0 0 */
/* NOTE 1: All parts.
* NOTE 2: In IS25XP terminology, 0x52 and 0xd8 are block erase and 0x20
* is a sector erase. Block erase provides a faster way to erase
* multiple 4K sectors at once.
* NOTE 3: The larger chips (256/512Mbit) requires more than 24 address bits.
* To enable this, the EN4B command changes the address length of all
* commands that take a 3-byte address to 4 bytes. For information,
* other commands with a fixed 4-byte address are available.
*/
/* Status register bit definitions */
#define IS25_SR_WIP (1 << 0) /* Bit 0: Write in progress bit */
#define IS25_SR_WEL (1 << 1) /* Bit 1: Write enable latch bit */
#define IS25_SR_BP_SHIFT (2) /* Bits 2-5: Block protect bits */
#define IS25_SR_BP_MASK (15 << IS25_SR_BP_SHIFT)
#define IS25_SR_BP_NONE (0 << IS25_SR_BP_SHIFT) /* Unprotected */
#define IS25_SR_BP_UPPER128th (1 << IS25_SR_BP_SHIFT) /* Upper 128th */
#define IS25_SR_BP_UPPER64th (2 << IS25_SR_BP_SHIFT) /* Upper 64th */
#define IS25_SR_BP_UPPER32nd (3 << IS25_SR_BP_SHIFT) /* Upper 32nd */
#define IS25_SR_BP_UPPER16th (4 << IS25_SR_BP_SHIFT) /* Upper 16th */
#define IS25_SR_BP_UPPER8th (5 << IS25_SR_BP_SHIFT) /* Upper 8th */
#define IS25_SR_BP_UPPERQTR (6 << IS25_SR_BP_SHIFT) /* Upper quarter */
#define IS25_SR_BP_UPPERHALF (7 << IS25_SR_BP_SHIFT) /* Upper half */
#define IS25_SR_BP_ALL (8 << IS25_SR_BP_SHIFT) /* All sectors */
#define IS25_SR_QE (1 << 6) /* Bit 6: Quad (QSPI) enable bit */
#define IS25_SR_SRWD (1 << 7) /* Bit 7: Status register write protect */
#define IS25_DUMMY 0xa5
/****************************************************************************
* Private Types
****************************************************************************/
/* This type represents the state of the MTD device. The struct mtd_dev_s
* must appear at the beginning of the definition so that you can freely
* cast between pointers to struct mtd_dev_s and struct is25xp_dev_s.
*/
struct is25xp_dev_s
{
struct mtd_dev_s mtd; /* MTD interface */
FAR struct spi_dev_s *dev; /* Saved SPI interface instance */
uint16_t spi_devid; /* SPIDEV_FLASH index */
uint8_t sectorshift; /* 12 */
uint8_t pageshift; /* 8 */
uint16_t nsectors; /* 2,048 or 4,096 or 8,192 or 16,384 */
uint32_t npages; /* 32,768 or 65,536 or 131,072 or 262,144 */
uint8_t lastwaswrite; /* Indicates if last operation was write */
uint8_t addrlen; /* Address length, 3 or 4 bytes */
};
/****************************************************************************
* Private Function Prototypes
****************************************************************************/
/* Helpers */
static void is25xp_lock(FAR struct spi_dev_s *dev);
static inline void is25xp_unlock(FAR struct spi_dev_s *dev);
static inline int is25xp_readid(struct is25xp_dev_s *priv);
static void is25xp_enable4byteaddr(struct is25xp_dev_s *priv);
static void is25xp_waitwritecomplete(struct is25xp_dev_s *priv);
static void is25xp_writeenable(struct is25xp_dev_s *priv);
static inline void is25xp_sectorerase(struct is25xp_dev_s *priv,
off_t offset,
uint8_t type);
static inline int is25xp_bulkerase(struct is25xp_dev_s *priv);
static inline void is25xp_pagewrite(struct is25xp_dev_s *priv,
FAR const uint8_t *buffer,
off_t offset);
/* MTD driver methods */
static int is25xp_erase(FAR struct mtd_dev_s *dev,
off_t startblock,
size_t nblocks);
static ssize_t is25xp_bread(FAR struct mtd_dev_s *dev,
off_t startblock,
size_t nblocks, FAR uint8_t *buf);
static ssize_t is25xp_bwrite(FAR struct mtd_dev_s *dev,
off_t startblock,
size_t nblocks, FAR const uint8_t *buf);
static ssize_t is25xp_read(FAR struct mtd_dev_s *dev,
off_t offset,
size_t nbytes,
FAR uint8_t *buffer);
#ifdef CONFIG_MTD_BYTE_WRITE
static ssize_t is25xp_write(FAR struct mtd_dev_s *dev,
off_t offset,
size_t nbytes,
FAR const uint8_t *buffer);
#endif
static int is25xp_ioctl(FAR struct mtd_dev_s *dev,
int cmd,
unsigned long arg);
/****************************************************************************
* Name: is25xp_lock
****************************************************************************/
static void is25xp_lock(FAR struct spi_dev_s *dev)
{
/* On SPI buses where there are multiple devices, it will be necessary to
* lock SPI to have exclusive access to the buses for a sequence of
* transfers. The bus should be locked before the chip is selected.
*
* This is a blocking call and will not return until we have exclusive
* access to the SPI bus. We will retain that exclusive access until the
* bus is unlocked.
*/
SPI_LOCK(dev, true);
/* After locking the SPI bus, the we also need call the setfrequency,
* setbits, and setmode methods to make sure that the SPI is properly
* configured for the device.
* If the SPI bus is being shared, then it may have been left in an
* incompatible state.
*/
SPI_SETMODE(dev, CONFIG_IS25XP_SPIMODE);
SPI_SETBITS(dev, 8);
SPI_HWFEATURES(dev, 0);
SPI_SETFREQUENCY(dev, CONFIG_IS25XP_SPIFREQUENCY);
}
/****************************************************************************
* Name: is25xp_unlock
****************************************************************************/
static inline void is25xp_unlock(FAR struct spi_dev_s *dev)
{
SPI_LOCK(dev, false);
}
/****************************************************************************
* Name: is25xp_readid
****************************************************************************/
static inline int is25xp_readid(struct is25xp_dev_s *priv)
{
uint16_t manufacturer;
uint16_t memory;
uint16_t capacity;
finfo("priv: %p\n", priv);
/* Lock the SPI bus, configure the bus, and select this FLASH part. */
is25xp_lock(priv->dev);
SPI_SELECT(priv->dev, SPIDEV_FLASH(priv->spi_devid), true);
/* Send the "Read ID (RDID)" command and read the first three ID bytes */
SPI_SEND(priv->dev, IS25_RDID);
manufacturer = SPI_SEND(priv->dev, IS25_DUMMY);
memory = SPI_SEND(priv->dev, IS25_DUMMY);
capacity = SPI_SEND(priv->dev, IS25_DUMMY);
/* Deselect the FLASH and unlock the bus */
SPI_SELECT(priv->dev, SPIDEV_FLASH(priv->spi_devid), false);
is25xp_unlock(priv->dev);
finfo("manufacturer: %02x memory: %02x capacity: %02x\n",
manufacturer, memory, capacity);
/* Check for a valid manufacturer and memory type */
if (manufacturer == IS25_MANUFACTURER && memory == IS25_MEMORY_TYPE)
{
/* Okay.. is it a FLASH capacity that we understand? */
if (capacity == IS25_IS25LP064_CAPACITY)
{
/* Save the FLASH geometry */
priv->sectorshift = IS25_IS25LP064_SECTOR_SHIFT;
priv->nsectors = IS25_IS25LP064_NSECTORS;
priv->pageshift = IS25_IS25LP064_PAGE_SHIFT;
priv->npages = IS25_IS25LP064_NPAGES;
priv->addrlen = IS25_IS25LP064_ADDRLEN;
return OK;
}
else if (capacity == IS25_IS25LP128_CAPACITY)
{
/* Save the FLASH geometry */
priv->sectorshift = IS25_IS25LP128_SECTOR_SHIFT;
priv->nsectors = IS25_IS25LP128_NSECTORS;
priv->pageshift = IS25_IS25LP128_PAGE_SHIFT;
priv->npages = IS25_IS25LP128_NPAGES;
priv->addrlen = IS25_IS25LP128_ADDRLEN;
return OK;
}
else if (capacity == IS25_IS25LP256_CAPACITY)
{
/* Save the FLASH geometry */
priv->sectorshift = IS25_IS25LP256_SECTOR_SHIFT;
priv->nsectors = IS25_IS25LP256_NSECTORS;
priv->pageshift = IS25_IS25LP256_PAGE_SHIFT;
priv->npages = IS25_IS25LP256_NPAGES;
priv->addrlen = IS25_IS25LP256_ADDRLEN;
return OK;
}
else if (capacity == IS25_IS25LP512_CAPACITY)
{
/* Save the FLASH geometry */
priv->sectorshift = IS25_IS25LP512_SECTOR_SHIFT;
priv->nsectors = IS25_IS25LP512_NSECTORS;
priv->pageshift = IS25_IS25LP512_PAGE_SHIFT;
priv->npages = IS25_IS25LP512_NPAGES;
priv->addrlen = IS25_IS25LP512_ADDRLEN;
return OK;
}
}
return -ENODEV;
}
/****************************************************************************
* Name: is25xp_enable4byteaddr
****************************************************************************/
static void is25xp_enable4byteaddr(struct is25xp_dev_s *priv)
{
/* Lock the SPI bus, configure the bus, and select this FLASH part. */
is25xp_lock(priv->dev);
SPI_SELECT(priv->dev, SPIDEV_FLASH(priv->spi_devid), true);
/* Send the "Enter 4-byte Address Mode (EN4B)" command */
SPI_SEND(priv->dev, IS25_EN4B);
/* Deselect the FLASH and unlock the bus */
SPI_SELECT(priv->dev, SPIDEV_FLASH(priv->spi_devid), false);
is25xp_unlock(priv->dev);
}
/****************************************************************************
* Name: is25xp_waitwritecomplete
****************************************************************************/
static void is25xp_waitwritecomplete(struct is25xp_dev_s *priv)
{
uint8_t status;
/* No need to check if no write / erase was done */
#if 0
if (!priv->lastwaswrite)
{
return;
}
#endif
/* Are we the only device on the bus? */
#ifdef CONFIG_SPI_OWNBUS
/* Select this FLASH part */
SPI_SELECT(priv->dev, SPIDEV_FLASH(priv->spi_devid), true);
/* Send "Read Status Register (RDSR)" command */
SPI_SEND(priv->dev, IS25_RDSR);
/* Loop as long as the memory is busy with a write cycle */
do
{
/* Send a dummy byte to generate the clock needed to shift out
* the status
*/
status = SPI_SEND(priv->dev, IS25_DUMMY);
}
while ((status & IS25_SR_WIP) != 0);
/* Deselect the FLASH */
SPI_SELECT(priv->dev, SPIDEV_FLASH(priv->spi_devid), false);
#else
/* Loop as long as the memory is busy with a write cycle */
do
{
/* Select this FLASH part */
SPI_SELECT(priv->dev, SPIDEV_FLASH(priv->spi_devid), true);
/* Send "Read Status Register (RDSR)" command */
SPI_SEND(priv->dev, IS25_RDSR);
/* Send a dummy byte to generate the clock needed to shift out
* the status
*/
status = SPI_SEND(priv->dev, IS25_DUMMY);
/* Deselect the FLASH */
SPI_SELECT(priv->dev, SPIDEV_FLASH(priv->spi_devid), false);
/* Given that writing could take up to few tens of milliseconds,
* and erasing could take more. The following short delay in the
* "busy" case will allow other peripherals to access the SPI bus.
*/
if ((status & IS25_SR_WIP) != 0)
{
is25xp_unlock(priv->dev);
nxsig_usleep(1000);
is25xp_lock(priv->dev);
}
}
while ((status & IS25_SR_WIP) != 0);
#endif
priv->lastwaswrite = false;
finfo("Complete\n");
}
/****************************************************************************
* Name: is25xp_writeenable
****************************************************************************/
static void is25xp_writeenable(struct is25xp_dev_s *priv)
{
/* Select this FLASH part */
SPI_SELECT(priv->dev, SPIDEV_FLASH(priv->spi_devid), true);
/* Send "Write Enable (WREN)" command */
SPI_SEND(priv->dev, IS25_WREN);
/* Deselect the FLASH */
SPI_SELECT(priv->dev, SPIDEV_FLASH(priv->spi_devid), false);
finfo("Enabled\n");
}
/****************************************************************************
* Name: is25xp_unprotect
****************************************************************************/
static void is25xp_unprotect(struct is25xp_dev_s *priv)
{
/* Make writeable */
is25xp_writeenable(priv);
/* Send "Write status (WRSR)" */
SPI_SELECT(priv->dev, SPIDEV_FLASH(priv->spi_devid), true);
SPI_SEND(priv->dev, IS25_WRSR);
/* Followed by the new status value */
SPI_SEND(priv->dev, 0);
SPI_SELECT(priv->dev, SPIDEV_FLASH(priv->spi_devid), false);
}
/****************************************************************************
* Name: is25xp_sectorerase
****************************************************************************/
static void is25xp_sectorerase(struct is25xp_dev_s *priv,
off_t sector,
uint8_t type)
{
off_t offset;
offset = sector << priv->sectorshift;
finfo("sector: %08lx\n", (long)sector);
/* Wait for any preceding write to complete. We could simplify things by
* perform this wait at the end of each write operation (rather than at
* the beginning of ALL operations), but have the wait first will slightly
* improve performance.
*/
is25xp_waitwritecomplete(priv);
/* Send write enable instruction */
is25xp_writeenable(priv);
/* Select this FLASH part */
SPI_SELECT(priv->dev, SPIDEV_FLASH(priv->spi_devid), true);
/* Send the "Sector Erase (SE)" or Sub-Sector Erase (SSE) instruction
* that was passed in as the erase type.
*/
SPI_SEND(priv->dev, type);
/* Send the sector offset high byte first. For all of the supported
* parts, the sector number is completely contained in the first byte
* and the values used in the following two bytes don't really matter.
*/
if (priv->addrlen == 4)
{
SPI_SEND(priv->dev, (offset >> 24) & 0xff);
}
SPI_SEND(priv->dev, (offset >> 16) & 0xff);
SPI_SEND(priv->dev, (offset >> 8) & 0xff);
SPI_SEND(priv->dev, offset & 0xff);
priv->lastwaswrite = true;
/* Deselect the FLASH */
SPI_SELECT(priv->dev, SPIDEV_FLASH(priv->spi_devid), false);
finfo("Erased\n");
}
/****************************************************************************
* Name: is25xp_bulkerase
****************************************************************************/
static inline int is25xp_bulkerase(struct is25xp_dev_s *priv)
{
finfo("priv: %p\n", priv);
/* Wait for any preceding write to complete. We could simplify things by
* perform this wait at the end of each write operation (rather than at
* the beginning of ALL operations), but have the wait first will slightly
* improve performance.
*/
is25xp_waitwritecomplete(priv);
/* Send write enable instruction */
is25xp_writeenable(priv);
/* Select this FLASH part */
SPI_SELECT(priv->dev, SPIDEV_FLASH(priv->spi_devid), true);
/* Send the "Chip Erase (CER)" instruction */
SPI_SEND(priv->dev, IS25_CER);
/* Deselect the FLASH */
SPI_SELECT(priv->dev, SPIDEV_FLASH(priv->spi_devid), false);
is25xp_waitwritecomplete(priv);
finfo("Return: OK\n");
return OK;
}
/****************************************************************************
* Name: is25xp_pagewrite
****************************************************************************/
static inline void is25xp_pagewrite(struct is25xp_dev_s *priv,
FAR const uint8_t *buffer,
off_t page)
{
off_t offset = page << priv->pageshift;
finfo("page: %08lx offset: %08lx\n", (long)page, (long)offset);
/* Wait for any preceding write to complete. We could simplify things by
* perform this wait at the end of each write operation (rather than at
* the beginning of ALL operations), but have the wait first will slightly
* improve performance.
*/
is25xp_waitwritecomplete(priv);
/* Enable the write access to the FLASH */
is25xp_writeenable(priv);
/* Select this FLASH part */
SPI_SELECT(priv->dev, SPIDEV_FLASH(priv->spi_devid), true);
/* Send "Page Program (PP)" command */
SPI_SEND(priv->dev, IS25_PP);
/* Send the page offset high byte first. */
if (priv->addrlen == 4)
{
SPI_SEND(priv->dev, (offset >> 24) & 0xff);
}
SPI_SEND(priv->dev, (offset >> 16) & 0xff);
SPI_SEND(priv->dev, (offset >> 8) & 0xff);
SPI_SEND(priv->dev, offset & 0xff);
/* Then write the specified number of bytes */
SPI_SNDBLOCK(priv->dev, buffer, 1 << priv->pageshift);
priv->lastwaswrite = true;
/* Deselect the FLASH: Chip Select high */
SPI_SELECT(priv->dev, SPIDEV_FLASH(priv->spi_devid), false);
finfo("Written\n");
}
/****************************************************************************
* Name: is25xp_bytewrite
****************************************************************************/
#ifdef CONFIG_MTD_BYTE_WRITE
static inline void is25xp_bytewrite(struct is25xp_dev_s *priv,
FAR const uint8_t *buffer, off_t offset,
uint16_t count)
{
finfo("offset: %08lx count:%d\n", (long)offset, count);
/* Wait for any preceding write to complete. We could simplify things by
* perform this wait at the end of each write operation (rather than at
* the beginning of ALL operations), but have the wait first will slightly
* improve performance.
*/
is25xp_waitwritecomplete(priv);
/* Enable the write access to the FLASH */
is25xp_writeenable(priv);
/* Select this FLASH part */
SPI_SELECT(priv->dev, SPIDEV_FLASH(priv->spi_devid), true);
/* Send "Page Program (PP)" command */
SPI_SEND(priv->dev, IS25_PP);
/* Send the page offset high byte first. */
if (priv->addrlen == 4)
{
SPI_SEND(priv->dev, (offset >> 24) & 0xff);
}
SPI_SEND(priv->dev, (offset >> 16) & 0xff);
SPI_SEND(priv->dev, (offset >> 8) & 0xff);
SPI_SEND(priv->dev, offset & 0xff);
/* Then write the specified number of bytes */
SPI_SNDBLOCK(priv->dev, buffer, count);
priv->lastwaswrite = true;
/* Deselect the FLASH: Chip Select high */
SPI_SELECT(priv->dev, SPIDEV_FLASH(priv->spi_devid), false);
finfo("Written\n");
}
#endif
/****************************************************************************
* Name: is25xp_erase
****************************************************************************/
static int is25xp_erase(FAR struct mtd_dev_s *dev,
off_t startblock,
size_t nblocks)
{
FAR struct is25xp_dev_s *priv = (FAR struct is25xp_dev_s *)dev;
size_t blocksleft = nblocks;
finfo("startblock: %08lx nblocks: %d\n", (long)startblock, (int)nblocks);
/* Lock access to the SPI bus until we complete the erase */
is25xp_lock(priv->dev);
while (blocksleft > 0)
{
size_t sectorboundry;
size_t blkper;
/* We will erase in either 4K sectors or 32K or 64K blocks depending
* on the largest unit we can use given the startblock and nblocks.
* This will reduce erase time (in the event we have partitions
* enabled and are doing a bulk erase which is translated into
* a block erase operation).
*/
/* Test for 64K alignment */
blkper = 64 / 4;
sectorboundry = (startblock + blkper - 1) / blkper;
sectorboundry *= blkper;
/* If we are on a sector boundary and have at least a full sector
* of blocks left to erase, then we can do a full sector erase.
*/
if (startblock == sectorboundry && blocksleft >= blkper)
{
/* Do a 64k block erase */
is25xp_sectorerase(priv, startblock, IS25_BE64);
startblock += blkper;
blocksleft -= blkper;
continue;
}
/* Test for 32K block alignment */
blkper = 32 / 4;
sectorboundry = (startblock + blkper - 1) / blkper;
sectorboundry *= blkper;
if (startblock == sectorboundry && blocksleft >= blkper)
{
/* Do a 32k block erase */
is25xp_sectorerase(priv, startblock, IS25_BE32);
startblock += blkper;
blocksleft -= blkper;
continue;
}
else
{
/* Just do a sector erase */
is25xp_sectorerase(priv, startblock, IS25_SE);
startblock++;
blocksleft--;
continue;
}
}
is25xp_unlock(priv->dev);
return (int)nblocks;
}
/****************************************************************************
* Name: is25xp_bread
****************************************************************************/
static ssize_t is25xp_bread(FAR struct mtd_dev_s *dev,
off_t startblock,
size_t nblocks,
FAR uint8_t *buffer)
{
FAR struct is25xp_dev_s *priv = (FAR struct is25xp_dev_s *)dev;
ssize_t nbytes;
finfo("startblock: %08lx nblocks: %d\n", (long)startblock, (int)nblocks);
/* On this device, we can handle the block read just like the byte-oriented
* read
*/
nbytes = is25xp_read(dev,
startblock << priv->pageshift,
nblocks << priv->pageshift,
buffer);
if (nbytes > 0)
{
return nbytes >> priv->pageshift;
}
return (int)nbytes;
}
/****************************************************************************
* Name: is25xp_bwrite
****************************************************************************/
static ssize_t is25xp_bwrite(FAR struct mtd_dev_s *dev,
off_t startblock,
size_t nblocks,
FAR const uint8_t *buffer)
{
FAR struct is25xp_dev_s *priv = (FAR struct is25xp_dev_s *)dev;
size_t blocksleft = nblocks;
size_t pagesize = 1 << priv->pageshift;
finfo("startblock: %08lx nblocks: %d\n", (long)startblock, (int)nblocks);
/* Lock the SPI bus and write each page to FLASH */
is25xp_lock(priv->dev);
while (blocksleft-- > 0)
{
is25xp_pagewrite(priv, buffer, startblock);
buffer += pagesize;
startblock++;
}
is25xp_unlock(priv->dev);
return nblocks;
}
/****************************************************************************
* Name: is25xp_read
****************************************************************************/
static ssize_t is25xp_read(FAR struct mtd_dev_s *dev,
off_t offset,
size_t nbytes,
FAR uint8_t *buffer)
{
FAR struct is25xp_dev_s *priv = (FAR struct is25xp_dev_s *)dev;
finfo("offset: %08lx nbytes: %d\n", (long)offset, (int)nbytes);
/* Lock the SPI bus NOW because the following call must be executed with
* the bus locked.
*/
is25xp_lock(priv->dev);
/* Wait for any preceding write to complete. We could simplify things by
* perform this wait at the end of each write operation (rather than at
* the beginning of ALL operations), but have the wait first will slightly
* improve performance.
*/
if (priv->lastwaswrite)
{
is25xp_waitwritecomplete(priv);
}
/* Select this FLASH part */
SPI_SELECT(priv->dev, SPIDEV_FLASH(priv->spi_devid), true);
/* Send "Read from Memory " instruction */
SPI_SEND(priv->dev, IS25_READ);
/* Send the page offset high byte first. */
if (priv->addrlen == 4)
{
SPI_SEND(priv->dev, (offset >> 24) & 0xff);
}
SPI_SEND(priv->dev, (offset >> 16) & 0xff);
SPI_SEND(priv->dev, (offset >> 8) & 0xff);
SPI_SEND(priv->dev, offset & 0xff);
/* Then read all of the requested bytes */
SPI_RECVBLOCK(priv->dev, buffer, nbytes);
/* Deselect the FLASH and unlock the SPI bus */
SPI_SELECT(priv->dev, SPIDEV_FLASH(priv->spi_devid), false);
is25xp_unlock(priv->dev);
finfo("return nbytes: %d\n", (int)nbytes);
return nbytes;
}
/****************************************************************************
* Name: is25xp_write
****************************************************************************/
#ifdef CONFIG_MTD_BYTE_WRITE
static ssize_t is25xp_write(FAR struct mtd_dev_s *dev,
off_t offset,
size_t nbytes,
FAR const uint8_t *buffer)
{
FAR struct is25xp_dev_s *priv = (FAR struct is25xp_dev_s *)dev;
int startpage;
int endpage;
int count;
int index;
int pagesize;
int bytestowrite;
finfo("offset: %08lx nbytes: %d\n", (long)offset, (int)nbytes);
/* We must test if the offset + count crosses one or more pages
* and perform individual writes. The devices can only write in
* page increments.
*/
startpage = offset / (1 << priv->pageshift);
endpage = (offset + nbytes) / (1 << priv->pageshift);
is25xp_lock(priv->dev);
if (startpage == endpage)
{
/* All bytes within one programmable page. Just do the write. */
is25xp_bytewrite(priv, buffer, offset, nbytes);
}
else
{
/* Write the 1st partial-page */
count = nbytes;
pagesize = (1 << priv->pageshift);
bytestowrite = pagesize - (offset & (pagesize - 1));
is25xp_bytewrite(priv, buffer, offset, bytestowrite);
/* Update offset and count */
offset += bytestowrite;
count -= bytestowrite;
index = bytestowrite;
/* Write full pages */
while (count >= pagesize)
{
is25xp_bytewrite(priv, &buffer[index], offset, pagesize);
/* Update offset and count */
offset += pagesize;
count -= pagesize;
index += pagesize;
}
/* Now write any partial page at the end */
if (count > 0)
{
is25xp_bytewrite(priv, &buffer[index], offset, count);
}
priv->lastwaswrite = true;
}
is25xp_unlock(priv->dev);
return nbytes;
}
#endif /* CONFIG_MTD_BYTE_WRITE */
/****************************************************************************
* Name: is25xp_ioctl
****************************************************************************/
static int is25xp_ioctl(FAR struct mtd_dev_s *dev,
int cmd,
unsigned long arg)
{
FAR struct is25xp_dev_s *priv = (FAR struct is25xp_dev_s *)dev;
int ret = -EINVAL; /* Assume good command with bad parameters */
finfo("cmd: %d\n", cmd);
switch (cmd)
{
case MTDIOC_GEOMETRY:
{
FAR struct mtd_geometry_s *geo =
(FAR struct mtd_geometry_s *)((uintptr_t)arg);
if (geo)
{
memset(geo, 0, sizeof(*geo));
/* Populate the geometry structure with information need to
* know the capacity and how to access the device.
*
* NOTE:
* that the device is treated as though it where just an array
* of fixed size blocks. That is most likely not true, but the
* client will expect the device logic to do whatever is
* necessary to make it appear so.
*/
geo->blocksize = (1 << priv->pageshift);
geo->erasesize = (1 << priv->sectorshift);
geo->neraseblocks = priv->nsectors;
ret = OK;
finfo("blocksize: %"PRIu32" erasesize: %"PRIu32
" neraseblocks: %"PRIu32"\n", geo->blocksize,
geo->erasesize, geo->neraseblocks);
}
}
break;
case BIOC_PARTINFO:
{
FAR struct partition_info_s *info =
(FAR struct partition_info_s *)arg;
if (info != NULL)
{
info->numsectors = priv->nsectors <<
(priv->sectorshift - priv->pageshift);
info->sectorsize = 1 << priv->pageshift;
info->startsector = 0;
info->parent[0] = '\0';
ret = OK;
}
}
break;
case MTDIOC_BULKERASE:
{
/* Erase the entire device */
is25xp_lock(priv->dev);
ret = is25xp_bulkerase(priv);
is25xp_unlock(priv->dev);
}
break;
default:
ret = -ENOTTY; /* Bad command */
break;
}
finfo("return %d\n", ret);
return ret;
}
/****************************************************************************
* Public Functions
****************************************************************************/
/****************************************************************************
* Name: is25xp_initialize
*
* Description:
* Create an initialize MTD device instance. MTD devices are not registered
* in the file system, but are created as instances that can be bound to
* other functions (such as a block or character driver front end).
*
****************************************************************************/
FAR struct mtd_dev_s *is25xp_initialize(FAR struct spi_dev_s *dev,
uint16_t spi_devid)
{
FAR struct is25xp_dev_s *priv;
int ret;
finfo("dev: %p\n", dev);
/* Allocate a state structure (we allocate the structure instead of using
* a fixed, static allocation so that we can handle multiple FLASH devices.
* The current implementation handles several FLASH part per SPI bus.
*/
priv = kmm_zalloc(sizeof(struct is25xp_dev_s));
if (priv)
{
/* Initialize the allocated structure. (unsupported methods were
* nullified by kmm_zalloc).
*/
priv->mtd.erase = is25xp_erase;
priv->mtd.bread = is25xp_bread;
priv->mtd.bwrite = is25xp_bwrite;
priv->mtd.read = is25xp_read;
#ifdef CONFIG_MTD_BYTE_WRITE
priv->mtd.write = is25xp_write;
#endif
priv->mtd.ioctl = is25xp_ioctl;
priv->mtd.name = "is25xp";
priv->dev = dev;
priv->spi_devid = spi_devid;
priv->lastwaswrite = false;
/* Deselect the FLASH */
SPI_SELECT(dev, SPIDEV_FLASH(priv->spi_devid), false);
/* Identify the FLASH chip and get its capacity */
ret = is25xp_readid(priv);
if (ret != OK)
{
/* Unrecognized! Discard all of that work we just did and
* return NULL
*/
ferr("ERROR: Unrecognized\n");
kmm_free(priv);
return NULL;
}
else
{
/* For the large capacity chip, enable 4-byte address mode. */
if (priv->addrlen == 4)
{
is25xp_enable4byteaddr(priv);
}
/* Make sure that the FLASH is unprotected so that we can
* write into it
*/
is25xp_unprotect(priv);
}
}
/* Return the implementation-specific state structure as the MTD device */
finfo("Return %p\n", priv);
return (FAR struct mtd_dev_s *)priv;
}